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Numerical modeling

O In this class we will discuss more in detail how
numerical modeling of space weather phenomena
works.

O We will discuss both empirical models that have
historically played main role in space weather modeling
and first-principles models that are the ultimate way to
model space weather (and any other natural)
phenomena.



Numerical modeling

O Although also forecaster intuition/experience plays an
important role, we need models for doing actual space
weather predictions.

O  Models can be divided roughly into two categories:
Empirical models built directly from observations.

First-principles models (called also physics-based models) built using
knowledge about the elementary physics of the system.

O Also semi-empirical models blending the two approaches exist.

O The next three slides we discuss empirical modeling but in
this class we will focus on the first-principles models.



Numerical modeling

O In empirical modeling observations are used build a model that
describes the behavior of the system.

O  Empirical modeling is essentially fitting a curve (or more

generally, function - sometimes a very complicated one) to the
input-output data. Input-output data often multidimensional.
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Numerical modeling

O The fitted “curve” is then used to forecast new output from
the known input.

Forecasted output .

Observed input



Numerical modeling

O  Because the models are fitted to observed data, empirical
approach is very tough to beat for modeling average
conditions.

O  However, empirical models do not necessarily extrapolate
well to extreme conditions not “seen” by the observed data.

O iISWA has a number of that are useful for
forecasting purpose.



Numerical modeling

O In physics we describe the evolution of the system using
mathematical equations. Calculus the standard
language used to express these equations.

O For example, simple harmonic oscillator is described as:

2
T = —kx (1)
dt
with analytical solution
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From initial conditions



Numerical modeling

O  Unfortunately analytical solutions are available only for a
fairly small number of physical situations of interest.

O Analytical solutions generally not available for dynamic
spatiotemporally extended nonlinear natural systems such as

weather or space weather.
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Harmonic oscillators (credit: Penn Clouds from a simulation using the Goddard
State University) Earth Observing System Model Version 5
(credit: NASA GSFC SVS)



Numerical modeling

When analytical solutions are not available one needs
numerical modeling/numerical simulations for studying the
physical system of interest.

In numerical modeling we use computers to solve the set of
equations describing-the-—esctom

Numerical modeling
ingredients:

We will use modern global geospace
MHD modeling to demonstrate these

Selection of the system of equations.

Selection of the geometry and numerical grid.

Selection of the boundary and initial conditions.

Selection of the numerical scheme.




Numerical modeling

O The first step is to select the equations that capture the key
physics of the system of interest.

O  One cannot capture and model all physics so one needs to
find appropriate approximations containing central physics
of interest.

O  For example, one cannot model the movement all charged
particles and evolution of associated electromagnetic fields
in global plasmas: single-fluid magnetohydrodynamic (MHD)
approach a common approximation.

Valid only if the timescales of the physics of interest larger
than ion gyrofrequency and the spatial scales larger than ion
gyroradius.



Numerical modeling

O The basic set of MHD equations in a conservative form
is:

o _

— V- (po) (22)
ot ; V-B=0 (2e)
%L::—V-{pvv—i—l(p—k%)—BB}(Zb) E=-vxB+nj (2f)
oU J=VxB (2g)
o = —-V{(U +p)v+E x B} (2¢) b n? B2
0B —1 * 2 i 2 (2h)

Credit: Raeder (2003)




Numerical modeling

O In contrast to analytical solutions numerical modeling is done
in discrete spatial and temporal domains.

O One thus needs to select a spatial simulation grid appropriate
for the setting of interest. Common grids include:

a) uniform Cartesian, b)

stretched Cartesian, ¢)
spherical, d) adaptive
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Cartesian and e)
unstructured grids (credit:

Raeder, 2003)




Numerical modeling

O  Obtaining unique solutions to differential equations
requires boundary and initial conditions.

O  Typical boundary conditions in the global geospace

simulations: n
X Dipole field used and plasma
Typical BATS-R- 7 typically set initially to cold
US grid (credit: T (e.g. 5000 K) and tenuous
CCMCQ) . (e.g. 0.1 cm?) conditions
z [R Solar wind (observations)
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Numerical simulations

A great variety of numerical schemes developed to
numerically integrate the equations of interest.
Selection of appropriate scheme is a serious art.

Integration generally divided into temporal and spatial
components.

Consider conservative form equation:

&=—V-F(U) 3)
ot



Numerical modeling

O  One common 27 order (numerical truncation errors
proportional to At’) time differencing scheme reads:

BlE =" = %AN -F(U™);

(4)
Un+1 s Un e AIV - F(Un+l/2)

This specific approach is called explicit predictor-corrector
scheme.



Numerical modeling

O As a general rule of a thumb, smaller Az (i.e. also more
calculations) will give more accurate time differencing.

O  For explicit schemes an important Courant-Friedrichs-Levy

(CFL) stability criterion reads:

min(Ax,Ay,Az)
At <O — 5)
/‘ ‘v ‘ A
Of the order of 1 S~ Flow and magnetosonic

wave speeds
Tricks such as “Boris correction” limiting the wave speed

can be applied. Implicit schemes can take larger time steps.



Numerical modeling

O  Spatial differencing trickier. Again, many, many schemes
available. Common conservative finite differencing scheme

reads (see Eq. 3):

aﬁ_lt] % _(fi+1/2,j (U)- fi—l/z,j (U)) / Ax —
(fl j+12 U)-f1, Tl (U)) / Ay (6)

where 204 order (numerical errors

2 3
proportional to Ax™) central scheme reads:

2 =%(F<U,.>+F<Ui+1>) )

Numerical fluxes

Lty | Uit1,j-1
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Cell centers and corners

(credit: Raeder, 2003)



Numerical modeling

O  The nature of numerical errors depends on the order of the
spatial differencing scheme:

. . < 2
First order schemes (truncation error proportional to Ax”)
are diffusive. “Smoothing effect.”

Second order schemes (truncation error proportional
3 BN e
to Ax”) are dispersive. “Oscillation effect.”

O Flux limiters, for example, switching between diffusive and
dispersive schemes used to find an optimal ground between the
two effects.

Examples of diffusive and
dispersive solutions (credit:
Prof. Kuzmin, U. of Erlangen-

Nuremberg)




Numerical modeling

0O  Guaranteeing the condition VB =0 in the numerical
solution also requires some acrobatics but we will not go
into those details here.

O So in the end, throw all the 4 ingredients into a bag, shake
and something such as the following falls out:

OpenGGCM global
MHD simulation of
magnetospheric plasma
density (credit: NASA
GSFC SVS)

2007 Feb 3 03:13:30




Numerical modeling

O No simulation is perfect and it is imperative to keep in
mind some of the main potential sources for errors in
the numerical modeling process:

Quality/accuracy of the physics captured by the
equations that are being solved.

Quality of the boundary conditions - “garbage in
garbage out.”

Non-grid convergence - need more resolution.

Quality/accuracy of the used numerical schemes.



Numerical modeling

O Data assimilation that is widely used in regular weather
predictions is becoming more common also in space
weather applications:

Step we have been
S L / discussing past few slides

GPS

Prior knowledge Br_ijk—2

— — Based on e.g.
l ‘Of stata Xk—1[k—1 physical model
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[ Output estimate
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[llustration of the idea behind Kalman- Observations being ingested by

based data assimilation (credit: Wikipedia) GAIM (credit: Schunk et al., 2005)
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Numerical modeling

O  Data assimilation can provide

50

substantial improvements to
model predictions and is
definitely one of the key areas
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for further future development.
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O However, sparse nature of space
weather data poses a challenge.
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Top: GAIM forward model prediction
without data assimilation, middle:
GAIM prediction with observed TEC

assimilated, bottom: TEC observations . . .
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Numerical modeling

O A lot of recent progress in coupling different space weather
models with each other: connecting different domains and
different physics.

O  Classic example is the coupling between global MHD and

ionospheric electrodynamics: Bl ‘
Electric field mapped back to provide
01/01/2000 Timne = 02:00:00 UT y= 0.00Rg

0. I (part of) inner boundary conditions

01/01/2000 Time = 02:00:00
isphere Southern misphere

M1 g 122
+1.135

-10. =5.

0. 5.
x [Rel
Model at CCMC: BATSRUS L

Example global MHD and ionospheric
domains (credit: CCMC)

Field-aligned currents =
solution for the electric field



Magnetogram Driven
Solar Coronal Model

Eruptive Events
Generator Model

LEGEND

Numerical modeling

Solar Energetic Particles
Model

Earth Global
Magnetosphere Model

Mars Upper Atmosphere &
lonosphere Model
Mars Global
Magnetosphere Model

Saturn Upper Atmosphere &
lonosphere Model

Saturn Global
Magnetosphere Model

Saturn lonospheric
Electrodynamics Model

Interplanetary

Earth Radiation Belt Model

Earth Inner Magnetosphere
Drift Physics Model

Earth Upper Atmosphere &
lonosphere Model

Earth lonospheric
Electrodynamics Model

Near-Earth

State-of-the-art: model
coupling in the Space
Weather Modeling
Framework (credit:

University of Michigan)



Numerical modeling

Enhancement in the computational capacity has
revolutionized also our capability to carry out
numerical space weather simulations.

Microprocessor Transistor Counts 1971-2011 & Moore’s Law Number Of transistors in

integrated circuits and Moore’s

law (credit: Wikipedia)
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Numerical modeling

O However, there are limitations for making single processors
even faster. The future is in parallel computing.

Serial computing (credit: B. Barney) Parallel computing (credit: B. Barney)

problem instructions
l instructions
N

t3 2 t1
: — —
N 13 12 t1

Supercomputer - each blue
light is a node
Node - standalone
Von Neumann computer
CPU / Processor / Socket - each
has multiple cores / processors.

Cluster supercomputer composed of
nodes, CPUs and cores (credit: B.
Barney)




Numerical modeling

O Running modern first-principles space weather models
in real-time requires parallel code implementation and
usage of, for example, Beowulf clusters.

Approx. 1000 CPU
Beowulf system
operated by CCMC
and SWRC at NASA
GSFC

"15000 CPU “Discover”
cluster at NASA Center for
Climate Simulation (credit:

NASA/Goddard/Pat 1zzo)




Numerical modeling

O Let’s then review briefly some of the latest first-
principles space weather models.

0O  NASA GSFC Community Coordinated Modeling
Center ( ) the largest single one-stop-shop for a
go0d collection of these models.

O Many of these models are run in real-time and the
results are available in



Numerical modeling

O  One should never blindly trust model predictions. One
needs to understand how models performs in different
situations.

O  Model “error bars” can be studied through rigorous
validation against observed physical parameters.

O has been leading community-wide model
validation efforts for all major space weather domains.



Numerical simulations

O Let us then briefly review the basic steps for rigorous

model validation. We will use recent validation of ground

magnetic field predictions as an example.

O  First ones needs to select the time periods of interest:

Table 1.

the minimum Dst index and the maximum Kp index of the event, respectively.

Geospace events studied in the validation activity. The last two columns give

Event #

Date and time

min(Dst) max(Kp)

1

2

October 29, 2003 06:00 UT - October 30, 06:00 UT
December 14, 2006 12:00 UT - December 16, 00:00 UT
August 31, 2001 00:00 UT - September 1, 00:00 UT
August 31, 2005 10:00 UT - September 1, 12:00 UT
April 5, 2010 00:00 UT - April 6, 00:00 UT

August 5, 2011 09:00 UT - Aug 6, 09:00 UT

-353 nT

-139 nT

-40 nT

-131 nT

-73 nT

-113 nT

9

Storm events used in
the validation effort
(credit: Pulkkinen et
al., 2012)



Numerical simulations

Then one needs to find and select the sources for the

observational data.

60°W
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Location of the
geomagnetic observatories
used in the validation
effort (credit: Pulkkinen et
al., 2012)



Numerical simulations

O  Once the model(s) have have been run for the selected
periods one can start comparing observed and
predicted field variations.

B_Nerth from observatory file: yke_OBS_20100405.txt

| Observation:

L : Model runs:
—500

[3u] ynoN—g

—-1000

5:00 7:00 9:00 11:00 — 3.wEIGEL
2010/04/05 05:00 Time 2010/04/05 12:00

————————

N, predictedv groundw magnetic
field variations (credit: Pulkkinen et al., 2012)



Numerical simulations

Finally one needs to quantify the model performance using
some kind of metric. A zoo of different metrics available.

We have recently used event-based metrics measuring models
capability to detect threshold crossings within given time

windows.

1 POD (blue) and POFD (black). MID-LAT, dBdt_th: 1.1 nT/s
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Probability of Detection
(POD) and Probability of
False Detection (POFD)
within 20 min windows
(credit: Pulkkinen et al.,
2012)



Tasks “Numerical modeling”

Request a global MHD simulation (do not use GUMICS because only
serial implementation is available) at CCMC for the 4-5 hours of July
14, 2012 around the arrival of the CME at the Earth’s orbit. Once the
simulation has completed use CCMC’s online visualization interface
to study the modeled location of the magnetopause around the arrival
of the CME. Submit your findings at https://docs.google.com/
spreadsheet/viewform?

formkey=dHN2XORmcU 1uNEdUdjVnQkM3eVo5VEE6MQ).

Watch tutorial http://www.youtube.com/watch!v=QAs73yvZ7eY
on WSA-Enlil model and its use on space weather forecasting.
Submit your findings at https://docs.google.com/forms/d/
1vbfZVnGVpJnzjbm_283BqPO_81fotYI3Hwb5WY7jA60/

viewform.



