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Numerical modeling 

!   In this class we will discuss more in detail how 
numerical modeling of space weather phenomena 
works. 

!   We will discuss both empirical models that have 
historically played main role in space weather modeling 
and first-principles models that are the ultimate way to 
model space weather (and any other natural) 
phenomena.  



Numerical modeling 

!   Although also forecaster intuition/experience plays an 
important role, we need models for doing actual space 
weather predictions. 

!   Models can be divided roughly into two categories: 
!   Empirical models built directly from observations. 

!   First-principles models (called also physics-based models) built using 
knowledge about the elementary physics of the system. 

!   Also semi-empirical models blending the two approaches exist. 

!   The next three slides we discuss empirical modeling but in 
this class we will focus on the first-principles models.  



Numerical modeling 

!   In empirical modeling observations are used build a model that 
describes the behavior of the system. 

!   Empirical modeling is essentially fitting a curve (or more 
generally, function – sometimes a very complicated one) to the 
input-output data. Input-output data often multidimensional. 

Data 

Fitted “curve” (model): 
Output = f(Input) 

O
ut
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t 

Input 



Numerical modeling 

!   The fitted “curve” is then used to forecast new output from 
the known input. 

Observed input 

Forecasted output 



Numerical modeling 

!   Because the models are fitted to observed data, empirical 
approach is very tough to beat for modeling average 
conditions. 

!   However, empirical models do not necessarily extrapolate 
well to extreme conditions not “seen” by the observed data. 

!   iSWA has a number of empirical models that are useful for 
forecasting purpose. 



Numerical modeling 

!   In physics we describe the evolution of the system using 
mathematical equations. Calculus the standard 
language used to express these equations. 

!   For example, simple harmonic oscillator is described as: 

      with analytical solution 

m d 2x
dt2

= −kx (1a) 

x(t) = Acos(ωt +φ) (1b) 

k /m

From initial conditions 



Numerical modeling 

!   Unfortunately analytical solutions are available only for a 
fairly small number of physical situations of interest. 

!   Analytical solutions generally not available for dynamic 
spatiotemporally extended nonlinear natural systems such as 
weather or space weather. 

Harmonic oscillators (credit: Penn 
State University) 

versus 

Clouds from a simulation using the Goddard 
Earth Observing System Model Version 5  
(credit: NASA GSFC SVS) 



Numerical modeling 

!   When analytical solutions are not available one needs 
numerical modeling/numerical simulations for studying the 
physical system of interest. 

!   In numerical modeling we use computers to solve the set of 
equations describing the system. 

!   Numerical modeling composed of the following central 
ingredients: 
!   Selection of the system of equations. 

!   Selection of the geometry and numerical grid. 

!   Selection of the boundary and initial conditions. 

!   Selection of the numerical scheme. 

We will use modern global geospace 
MHD modeling to demonstrate these 



Numerical modeling 

!   The first step is to select the equations that capture the key 
physics of the system of interest. 

!   One cannot capture and model all physics so one needs to 
find appropriate approximations containing central physics 
of interest. 

!   For example, one cannot model the movement all charged 
particles and evolution of associated electromagnetic fields 
in global plasmas: single-fluid magnetohydrodynamic (MHD) 
approach a common approximation. 
!   Valid only if the timescales of the physics of interest larger 

than ion gyrofrequency and the spatial scales larger than ion 
gyroradius. 



Numerical modeling 

!   The basic set of MHD equations in a conservative form 
is: 
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Non-conservative (Primitive Variable) Formalism

∂ρ

∂t
= −∇ · (ρv) (1a)

∂v

∂t
= −(v · ∇)v − 1

ρ
(∇p − j × B)(1b)

∂p

∂t
= −(v · ∇)p − γp∇ · v (1c)

∂B

∂t
= −∇ × E (1d)

∇ · B = 0 (1e)

E = −v × B + ηj (1f)

j = ∇ × B (1g)

The primitive variable formulation leads to numerical schemes that do not
strictly conserve momentum and energy, even in the hydrodynamic case. Such
schemes do not guarantee correct shock speeds and correct jump conditions at
discontinuities [41]. Furthermore, the convective derivative (v · ∇) is difficult to
treat numerically. Although the use of the primitive variable formulation leads
to algorithms with low memory requirements, its use should be avoided because
much better approaches are available.

Full Conservative Formalism

∂ρ

∂t
= −∇ · (ρv) (2a)

∂ρv

∂t
= −∇ ·

{

ρvv + I(p +
B2

2
) − BB

}

(2b)

∂U

∂t
= −∇·

{

(U + p)v + E × B
}

(2c)

∂B

∂t
= −∇ × E (2d)

∇ · B = 0 (2e)
E = −v × B + ηj (2f)
j = ∇ × B (2g)

U =
p

γ − 1
+
ρv2

2
+

B2

2
(2h)

The full conservative formulation allows the application of conservative fi-
nite difference schemes that strictly conserve mass (%), momentum (%v), energy
(U), and magnetic flux. This formulation is therefore always preferable. It may
lead, however, to difficulties in low β regions (β = p/(B2µ0) is the ratio of the
plasma pressure to the magnetic field pressure) where the pressure becomes the
difference of two large numbers. Numerical errors can then cause nonphysical
negative pressures. A semi-conservative form of the equations may then be more
appropriate.

Credit: Raeder (2003) 



Numerical modeling 

!   In contrast to analytical solutions numerical modeling is done 
in discrete spatial and temporal domains. 

!   One thus needs to select a spatial simulation grid appropriate 
for the setting of interest. Common grids include: 
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(a) (b) (c)

(d) (e)

Fig. 1. Several common choices for numerical grids: (a) a uniform Cartesian grid, (b)
a stretched Cartesian grid, (c) a non-Cartesian grid with Cartesian topology, (d) a
structured adaptive grid, (e) a unstructured grid

computation [55,88,56]. The major drawback is that such grids are not adapted
to the solution. Consequently computational resources are wasted where they
are not needed (in regions where the solutions are smooth) while other regions
are under resolved, for example, sharp gradients and shocks.

Stretched Cartesian grids like the one shown in Fig. 1b can be better adapted
to the solution, while maintaining essentially all of the advantages of a uniform
Cartesian grid [60,83]. In the case of global magnetospheric simulations such
a grid can actually be quite well adapted, providing high resolution in the X
(sun-Earth) direction at the bow shock and the magnetopause, high resolution
in the Z direction in the tail plasma sheet, and substantially lower resolution
almost everywhere else. Consider a typical simulation box that is 300×100×100
R3

E = 3×106 R3
E large. At a uniform 0.25 RE resolution such a grid would

require 1.92×108 cells, whereas a stretched Cartesian grid can achieve a 0.25
RE resolution in the critical parts of the magnetosphere with ∼1-2×106 cells.
Thus, a stretched Cartesian grid requires about two orders of magnitude less
computational resources. Such a grid is used, for example, in the UCLA code
[60,68,64].

Grids as shown in Fig. 1c (non-Cartesian, but with Cartesian topology) are
irregular but still with a regular connectivity between grid cells. This allows
the grid better to be adapted to the solution with only small overhead in com-
putation, however, post-processing and visualization becomes significantly more
difficult. The Lyon-Fedder-Mobarry (LFM) code [49,24] uses such a grid.

A relatively new gridding strategy is based on overlaying grid patches with
increasingly smaller resolution, such as shown in Fig. 1d. This approach is often
call “structured adaptive mesh refinement” (SAMR) when combined with the

a) uniform Cartesian, b) 
stretched Cartesian, c) 
spherical, d) adaptive 
Cartesian and e) 
unstructured grids (credit: 
Raeder, 2003) 



Numerical modeling 

!   Obtaining unique solutions to differential equations 
requires boundary and initial conditions. 

!   Typical boundary conditions in the global geospace 
simulations: 

Typical BATS-R-
US grid (credit: 

CCMC) 

Solar wind (observations) 

n ⋅∇ψ = 0

n
Dipole field used and plasma 
typically set initially to cold 
(e.g. 5000 K) and tenuous 
(e.g. 0.1 cm-3) conditions  

We will return to the 
inner boundary situation 



Numerical simulations 

!   A great variety of numerical schemes developed to 
numerically integrate the equations of interest. 
Selection of appropriate scheme is a serious art. 

!   Integration generally divided into temporal and spatial 
components. 

!   Consider conservative form equation: 

∂U
∂t

= −∇⋅F(U) (3) 



Numerical modeling 

!   One common 2nd order (numerical truncation errors 
proportional to      ) time differencing scheme reads: 

This specific approach is called explicit predictor-corrector 
scheme.  

Δt3

Un+1/2 =Un −
1
2
Δt∇⋅F(Un );

Un+1 =Un −Δt∇⋅F(Un+1/2 )
(4) 



Numerical modeling 

!   As a general rule of a thumb, smaller      (i.e. also more 
calculations) will give more accurate time differencing. 

!   For explicit schemes an important Courant-Friedrichs-Levy 
(CFL) stability criterion reads: 

Tricks such as “Boris correction” limiting the wave speed       
can be applied. Implicit schemes can take larger time steps.    

Δt

Δtmax < δ
min(Δx,Δy,Δz)

v + vMS
(5) 

Flow and magnetosonic 
wave speeds 

Of the order of 1 



Numerical modeling 

!   Spatial differencing trickier. Again, many, many schemes 
available. Common conservative finite differencing scheme 
reads (see Eq. 3): 

where 2nd order (numerical errors         
proportional to       ) central scheme reads: 
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Fig. 3. Variable placement of the numerical fluxes

Since FD methods are most widely used in global magnetosphere models we
restrict the discussion to these in the following. However, many FD concepts
carry over to the other methods as well. More specifically, we focus on the dis-
cussion of conservative difference schemes since these are most suitable for global
simulations.

Consider again the model equation, but this time with emphasis on the right
hand side:

∂U

∂t
= −∇ · F (U) (13)

where U is some variable and F (U) the flux associated with that variable. Intro-
duce a regular Cartesian grid (in 2d) where the cell centers are at xi = i∆x, i =
1, . . . and yj =j∆y, j =1, . . . and the cell corners are at (xi+1/2,j+1/2,yi+1/2,j+1/2).
Discretize the right hand side of equation (13) as:

∂U

∂t
= −(fi+ 1

2 ,j(U) − fi− 1
2 ,j(U))/∆x − (fi,j+ 1

2
(U) − fi,j− 1

2
(U))/∆y , (14)

where we introduced the numerical fluxes fi+ 1
2 ,j and fi,j+ 1

2
, which are functions

of the grid values:

fi+ 1
2 ,j = Gx(. . . , Ui−1,j , Ui,j , Ui+1,j , . . .) (15)

fi,j+ 1
2

= Gy(. . . , Ui,j−1, Ui,j , Ui,j+1, . . .) , (16)

and which must be consistent with the physical flux F (U) in the following sense:

G(U, . . . , U, U, . . . , U) = F (U) . (17)

Writing equation (13) in integral form:

∂

∂t

∫

V
UdV =

∫

S
F ds , (18)

where V is an arbitrary, simply connected volume, S its surface, and s its surface
normal, it is now easy to see that the variable U is globally conserved. In Fig. 3

Cell centers and corners 
(credit: Raeder, 2003) 

Numerical fluxes 

∂U
∂t

= − fi+1/2, j (U)− fi−1/2, j (U)( ) /Δx −

fi, j+1/2 (U)− fi, j−1/2 (U)( ) /Δy

Δx3

(6) 

fi+1/2 =
1
2
F(Ui )+F(Ui+1)( ) (7) 



Numerical modeling 

!   The nature of numerical errors depends on the order of the 
spatial differencing scheme: 

!   First order schemes (truncation error proportional to       ) 
are diffusive. “Smoothing effect.” 

!   Second order schemes (truncation error proportional 
to       ) are dispersive. “Oscillation effect.” 

!   Flux limiters, for example, switching between diffusive and 
dispersive schemes used to find an optimal ground between the 
two effects. 

Δx2

Δx3

Significance of terms in the modified equation

Exact solution of the discretized equations

Aun+1 = Bun ←→
∂u

∂t
+ Lu =

∞
∑

p=1

α2p
∂2pu

∂x2p
+

∞
∑

p=1

α2p+1
∂2p+1u

∂x2p+1

Even-order derivatives ∂2pu
∂x2p

cause numerical dissipation
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depends on the relative importance of dispersive and dissipative effects
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Examples of diffusive and 
dispersive solutions (credit: 

Prof. Kuzmin, U. of Erlangen-
Nuremberg)    



Numerical modeling 

!   Guaranteeing the condition                in the numerical 
solution also requires some acrobatics but we will not go 
into those details here.   

!   So in the end, throw all the 4 ingredients into a bag, shake 
and something such as the following falls out: 

∇⋅B = 0

OpenGGCM global 
MHD simulation of 
magnetospheric plasma 
density (credit: NASA 
GSFC SVS) 



Numerical modeling 

!   No simulation is perfect and it is imperative to keep in 
mind some of the main potential sources for errors in 
the numerical modeling process: 
!   Quality/accuracy of the physics captured by the 

equations that are being solved. 

!   Quality of the boundary conditions – “garbage in 
garbage out.” 

!   Non-grid convergence – need more resolution. 

!   Quality/accuracy of the used numerical schemes. 



Numerical modeling 

!   Data assimilation that is widely used in regular weather 
predictions is becoming more common also in space 
weather applications: 

Observations being ingested by 
GAIM (credit: Schunk et al., 2005) 

Illustration of the idea behind Kalman-
based data assimilation (credit: Wikipedia) 

Step we have been 
discussing past few slides 



Numerical modeling 

!   Data assimilation can provide 
substantial improvements to 
model predictions and is 
definitely one of the key areas 
for further future development. 

!   However, sparse nature of space 
weather data poses a challenge. 

(USU) Global Assimilation of Ionospheric Measurements-
Gauss-Markov (GAIM-GM) data assimilation model for the
large magnetic storm that occurred on November 20–21,
2003 [Scherliess et al., 2004, 2006, 2011; Schunk et al.,
2004a, 2004b, 2005]. Ground Total Electron Content
(TEC) measurements from 332 GPS receivers covering the
U.S. and Canada were assimilated in the GAIM-GM model.
More than 2000 slant TEC values were assimilated every
15 min. Bottom-side electron density profiles from the
ionosondes at Dyess and Eglin Air Force bases were also
assimilated. Figure 2 shows a snapshot at 20 UT on day 324.
Figure 2 (top) shows a snapshot of the output from the

background, physics-based, Ionosphere Forecast Model
(IFM) [Schunk et al., 1997] (no data assimilation), the
Figure 2 (middle) shows the GAIM-GM TEC reconstruc-
tion, and Figure 2 (bottom) shows the measured TEC plotted
at 350 km (slant TEC converted to the vertical). A ridge of
Storm Enhanced Density (SED), which extends from Florida
to the Great Lakes, is clearly evident in the data and is
reproduced by the GAIM-GM data assimilation model.
[8] The physics-based model (IFM) does not reproduce

the SED feature and yields TEC values outside of the SED
region that are too high. This erroneous output is a result of
missing physics in the IFM. Specifically, the SED is a result

Figure 2. The output from the USU GAIM Gauss-Markov data assimilation model for the magnetic
storm that occurred on November 20–21, 2003. (top) The TEC distribution obtained from the physics-
based IFM (no data assimilation), (bottom) the measured TEC at the 350 km pierce point (slant TEC
converted to the vertical), and (middle) the GAIM-GM reconstruction, where the slant TECs were
assimilated into the IFM. The snapshot is for day 324 in 2003 at 2000 UT. From Schunk et al. [2005].

SCHUNK ET AL.: IONOSPHERE-THERMOSPHERE FORECASTING RS0L23RS0L23

3 of 9

Top: GAIM forward model prediction 
without data assimilation, middle: 

GAIM prediction with observed TEC 
assimilated, bottom: TEC observations 

(credit: Schunk, 2012) 



Numerical modeling 

!   A lot of recent progress in coupling different space weather 
models with each other: connecting different domains and 
different physics. 

!   Classic example is the coupling between global MHD and 
ionospheric electrodynamics: 

Example global MHD and ionospheric 
domains (credit: CCMC) 

Field-aligned currents  
solution for the electric field 

Electric field mapped back to provide 
(part of) inner boundary conditions 



Numerical modeling 
State-of-the-art: model 
coupling in the Space 
Weather Modeling 
Framework (credit: 
University of Michigan) 



Numerical modeling 

!   Enhancement in the computational capacity has 
revolutionized also our capability to carry out 
numerical space weather simulations. 

Number of transistors in 
integrated circuits and Moore’s 
law (credit: Wikipedia) 



Numerical modeling 

!   However, there are limitations for making single processors 
even faster. The future is in parallel computing. 

Serial computing (credit: B. Barney) Parallel computing (credit: B. Barney) 

Cluster supercomputer composed of 
nodes, CPUs and cores (credit: B. 
Barney) 



Numerical modeling 

!   Running modern first-principles space weather models 
in real-time requires parallel code implementation and 
usage of, for example, Beowulf clusters. 

Approx. 1000 CPU 
Beowulf system 

operated by CCMC 
and SWRC at NASA 

GSFC 

15000 CPU “Discover” 
cluster at NASA Center for 
Climate Simulation (credit: 
NASA/Goddard/Pat Izzo)  



Numerical modeling 

!   Let’s then review briefly some of the latest first-
principles space weather models. 

!   NASA GSFC Community Coordinated Modeling 
Center (CCMC) the largest single one-stop-shop for a 
good collection of these models. 

!   Many of these models are run in real-time and the 
results are available in iSWA.  



Numerical modeling 

!   One should never blindly trust model predictions. One 
needs to understand how models performs in different 
situations. 

!   Model “error bars” can be studied through rigorous 
validation against observed physical parameters. 

!   CCMC has been leading community-wide model 
validation efforts for all major space weather domains. 



Numerical simulations 

!   Let us then briefly review the basic steps for rigorous 
model validation. We will use recent validation of ground 
magnetic field predictions as an example. 

!   First ones needs to select the time periods of interest: 
PULKKINEN ET AL.: GEOSPACE MODEL TRANSITION X - 35

Table 1. Geospace events studied in the validation activity. The last two columns give

the minimum Dst index and the maximum Kp index of the event, respectively.

Event # Date and time min(Dst) max(Kp)

1 October 29, 2003 06:00 UT - October 30, 06:00 UT -353 nT 9

2 December 14, 2006 12:00 UT - December 16, 00:00 UT -139 nT 8

3 August 31, 2001 00:00 UT - September 1, 00:00 UT -40 nT 4

4 August 31, 2005 10:00 UT - September 1, 12:00 UT -131 nT 7

5 April 5, 2010 00:00 UT - April 6, 00:00 UT -73 nT 7

6 August 5, 2011 09:00 UT - Aug 6, 09:00 UT -113 nT 8

D R A F T October 31, 2012, 7:57pm D R A F T

Storm events used in 
the validation effort 
(credit: Pulkkinen et 
al., 2012) 



Numerical simulations 

!   Then one needs to find and select the sources for the 
observational data. 

PULKKINEN ET AL.: GEOSPACE MODEL TRANSITION X - 37
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Figure 2. The locations and the station codes of the geomagnetic observatories used

in the study. Geomagnetic dipole coordinates are used. Thick and thin circles indicate

high-latitude and mid-latitude stations, respectively, used in the final analyses in Section

5.

D R A F T October 31, 2012, 7:57pm D R A F T

Location of the 
geomagnetic observatories 
used in the validation 
effort (credit: Pulkkinen et 
al., 2012) 



Numerical simulations 

!   Once the model(s) have have been run for the selected 
periods one can start comparing observed and 
predicted field variations. 

Modeled versus predicted ground magnetic 
field variations (credit: Pulkkinen et al., 2012) 



Numerical simulations 

!   Finally one needs to quantify the model performance using 
some kind of metric. A zoo of different metrics available. 

!   We have recently used event-based metrics measuring models 
capability to detect threshold crossings within given time 
windows. 

Probability of Detection 
(POD) and Probability of 
False Detection (POFD) 
within 20 min windows  
(credit: Pulkkinen et al., 
2012) 



Tasks “Numerical modeling” 

1.  Request a global MHD simulation (do not use GUMICS because only 
serial implementation is available) at CCMC for the 4-5 hours of July 
14, 2012 around the arrival of the CME at the Earth’s orbit. Once the 
simulation has completed use CCMC’s online visualization interface 
to study the modeled location of the magnetopause around the arrival 
of the CME. Submit your findings at https://docs.google.com/
spreadsheet/viewform?
formkey=dHN2X0RmcU1uNEdUdjVnQkM3eVo5VEE6MQ.  

2.  Watch tutorial http://www.youtube.com/watch?v=QAs73yvZ7eY 
on WSA-Enlil model and its use on space weather forecasting. 
Submit your findings at https://docs.google.com/forms/d/
1vbfZVnGVpJnzjbm_283BqPO_81fotYl3Hwb5WY7jA6o/
viewform. 


