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ABSTRACT

We present a study on particle acceleration in the low corona associated with the expansion and acceleration of
coronal mass ejections (CMEs). Because CME expansion regions low in the corona are effective accelerators over
a finite spatial region, we show that there is a rigidity regime where particles effectively diffuse away and escape
from the acceleration sites using analytic solutions to the Parker transport equation. This leads to the formation of
broken power-law distributions. Based on our analytic solutions, we find a natural ordering of the break energy and
second power-law slope (above the break energy) as a function of the scattering characteristics. These relations
provide testable predictions for the particle acceleration from low in the corona. Our initial analysis of solar
energetic particle observations suggests a range of shock compression ratios and rigidity dependencies that give
rise to the solar energetic particle (SEP) events studied. The wide range of characteristics inferred suggests
competing mechanisms at work in SEP acceleration. Thus, CME expansion and acceleration in the low corona may
naturally give rise to rapid particle acceleration and broken power-law distributions in large SEP events.
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1. INTRODUCTION

Large solar energetic particle (SEP) events are extremely
dangerous to astronauts (Cucinotta et al. 2010; Schwadron
et al. 2010) and electronic equipment in space. However,
developing the ability to predict where and when SEPs will
arise depends fundamentally on an understanding of the
underlying physical mechanisms that control energetic particle
acceleration and propagation.

Particle acceleration is believed to be associated with flare
acceleration and the shocks driven by coronal mass ejections
(CMEs; see a recent review by Aschwanden 2006). Recent
research has highlighted the importance of CME development
and associated particle acceleration low in the corona. For
example, Gopalswamy et al. (2005) studied the CME heights at
times of energetic particle release times. They found that
particle acceleration typically began at heights from ∼1.4 to 8.7
solar radii. This work is highly consistent with timing studies
based on in situ observations showing that energetic particles
are often accelerated as low as 2 solar radii (Reames 2009a,
2009b). Remote observations confirm that CME-driven shock
waves occur low in the corona, typically below 2 solar radii
(Liu et al. 2010; Veronig et al. 2010; Kozarev et al. 2011; Ma
et al. 2011). However, the region between 1 and 10 solar radii
remains extremely difficult to treat due to the complexity of the
magnetic structure, the difficulty in understanding how CMEs
are initiated, and how to treat the underlying particle
acceleration. Theoretical estimates based on numerical MHD
simulations and kinetic models (e.g., Kozarev et al. 2013)
demonstrate that understanding of particle acceleration and
accurately describing the formation of CMEs in the low corona
pose significant challenges.

Simulations and theories of particle acceleration have
confirmed that the low corona is an environment that supports
the conditions necessary for particle acceleration to high

energies. Particle-in-cell simulations of particle acceleration
provide significant insight into the underlying physical
mechanisms associated with shock acceleration (Giaca-
lone 2005). However, global shock acceleration and particle
propagation models often focus on interplanetary space
between ∼20 solar radii and 1 astronomical unit (AU), where
shocks become very strong and create hazardous gradual
radiation events (Verkhoglyadova et al. 2008; Zhang
et al. 2009). Sophisticated simulations of CMEs and related
shocks have shown that diffusive shock acceleration is capable
of accelerating solar energetic protons up to very high energies
of 10 GeV for very strong shocks (Tsurutani et al. 2003;
Roussev et al. 2004; Kocharov et al. 2005; Manchester
et al. 2005).
Recently, Schwadron et al. (2014) showed the first results of

the application of the Energetic Particle Radiation Environment
Model (EPREM; Schwadron et al. 2010) for describing particle
acceleration arising from a modeled CME low in the corona.
The modeling represents a combination of an energetic particle
solver that describes the evolution of the particle distribution
based on the focused transport equation and simulated MHD
fields. EPREM uses a methodology for energetic particle
modeling based on a concept first introduced by Kóta et al.
(2005a, 2005b) that utilizes a Lagrangian system co-moving
with the plasma for the energetic particle transport equation.
The same approach was used by Kozarev et al. (2013) to
describe particle acceleration from the low corona during CME
acceleration. In this case, the acceleration of the CME was
modeled with the Michigan Block-Adaptive-Tree-Solarwind-
Roe-Upwind-Scheme MHD code and coupled with the kinetic
energetic particle model (EPREM) to characterize the accel-
eration of energetic particles.
The MHD fields used by Schwadron et al. (2014) are solved

for using a coupled set of models, Corona–Heliosphere
(CORHEL) for the ambient solar corona, solar wind (Lionello
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et al. 2009; Riley & Lionello 2011; Riley et al. 2012), and
CMEs. CORHEL utilizes the Magnetohydrodynamic Algo-
rithm outside a Sphere (MAS) code (e.g., Mikić& Linker 1994;
Lionello et al. 1999; Mikić et al. 1999) that advances the
standard viscous and resistive MHD equations in spherical
coordinates. The model incorporates radiative losses, thermal
conduction parallel to the magnetic field, and an empirical
coronal heating function.

Generally, large amounts of particle acceleration occurring
low in the corona after fast expansion of a CME can be traced
back to the formation of large-scale compression regions and
shocks near the legs of the CME (Gorby et al. 2012; Linker
et al. 2014; Schwadron et al. 2014). In both the case of particle
acceleration in compression regions (see Giacalone et al. 2002;
Jokipii et al. 2003) and at shocks (e.g., Fermi 1949;
Drury 1983), particles can move back and forth across the
structure to gain energy after each crossing of the plasma
gradient or shock. In the case of shocks, the net energy gain
depends on the number of shock crossings (Bell 1978a, 1978b).
Diffusive acceleration generally requires a short scattering
mean free path (Lee et al. 1981; Lee 1983, 2005) or a quasi-
perpendicular configuration for efficient particle acceleration
(Jokipii 1982, 1986, 1987). These conditions allow for a high
rate of crossings of the speed gradient, and therefore lead to a
high rate of particle acceleration.

Another important observational factor in the development
of our understanding of large SEP events (particularly ground-
level events) is the common occurrence of broken power-law
distributions (Mason et al. 2002; Mewaldt et al. 2005a, 2005b,
2012). Recent work (Desai et al. 2015) has shown that the
power-law break has a rigidity dependence that suggests strong
wave–particle interactions.

The physical mechanisms resulting in these broken power
laws are still unknown. In this paper, we show that broken
power-law distributions could result from size-limited shocks
or compressions in the low corona. We then detail the types of
composition signatures that would be expected from particle
acceleration that occurs in these structures.

The methodology used here follows from an analytic
solution of the Parker transport equation in the presence of
size-limited acceleration regions. The approach, while simple,
provides significant insight into the underlying physics that
leads to particle acceleration to high energies and the formation
of broken power-law distributions from the low corona. In
particular, this work aids in the interpretation of numerical
solutions from EPREM and other numerical models.

A second central question addressed in this work is what
types of energetic particle signatures do we expect from low
coronal shocks and compressions? In this paper, we begin to
develop an analytic framework to answer that question. This
analytic framework is important not only in allowing for
interpretation of observational results, but also for under-
standing the implications of detailed numerical simulations of
CMEs for particle acceleration.

The paper is organized as follows. Section 2 discusses the
basic theory of size-limited shocks or compressions in the low
corona. Section 3 discusses observational implications of the
size-limited acceleration regions from the low corona. Section 4
ends the paper with discussion and conclusions.

The appendices detail results used in the paper for modeling
of CMEs in the low corona (detailed in Appendix A) and
theoretical treatments of energetic particle injection and

acceleration. The energetic particle treatments are detailed in
a series of appendices: Appendix B describes the scattering
mean paths in the low corona associated with parallel and
perpendicular diffusion; Appendix C discusses the injection of
particles into the diffusive acceleration process; Appendix D
provides the analytical solution to diffusive acceleration at a
size-limited shock or acceleration region.
The analytic solution is broken into several components:

Appendix D.1 explores the analytic solution for injection at an
individual location along the shock or compression where the
spatial dependence is considered only within the coplanarity
plane (containing the magnetic field); Appendix D.2 then
explores the corresponding solution where the spatial depen-
dence is considered only out of the plane of coplanarity;
Appendix D.3 generalizes the results of the previous two
subsections for 3D motion and diffusion along the shock or
compression; Appendix D.4 then solves for the distribution
function for injection taken as an integrated region along the
shock or compression; Appendix D.5 shows how loss
processes can be accounted for in these solutions.

2. DIFFUSIVE PARTICLE ACCELERATION AT LOW
CORONAL SHOCKS AND COMPRESSIONS: PARTICLE

ACCELERATION ON SIZE-LIMITED FRONTS

Our analysis is motivated by recent results of a simulation of
a CME formed low in the corona using the MAS model
developed by Predictive Science. Appendix A details the
configuration used for the simulation. The simulation revealed
a CME that rapidly accelerated low in the corona, causing
extremely strong compression regions to form close to the Sun
(Figure 1 of Schwadron et al. 2014).
We consider the configuration shown in Figure 1 where a

shock or compression region driven by a CME expansion
creates the conditions for diffusive shock acceleration low in
the corona. Often a description of diffusive acceleration at
shocks is solved for using as a starting point the Parker
transport equation:
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and k and k̂ are the diffusion coefficients parallel and
perpendicular to the magnetic field, respectively. The form of
the diffusion tensor indicated here is diagonal.
An off-diagonal term, Ak , due to drift is sometimes included

in the diffusion tensor. Alternatively, an explicit drift term,
Bcvp qB f3 2· [ ( ) ] ´  , may be included on the left-hand

side of the Parker equation. Drift leads to motion out of the
coplanarity plane, which is detailed in Appendix D.2. Gen-
erally, the effect of motion out of the coplanarity plane is small,
except for shocks or compressions with obliquity angles very
close to 90°. While neglected here, largely for simplicity, we
emphasize that this term may need to be accounted for in future
studies that examine large events from highly oblique shocks
and compressions.
The source term, which is also detailed in Appendix D.1,

is a slight modification of the standard treatment for
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diffusive shock acceleration theory, in which particles are
injected at a fixed energy and at the shock (x = 0). Here, the
shock or compression is within a plane (y z- ) centered at
x = 0. Magnetic field lines lie within the x z- plane
(coplanarity). Particles are injected at a fixed location (z = 0)
in the coplanarity plane. This same concept was introduced
by Schwadron et al. (2008) to model particle acceleration at
the blunt termination shock. We first solve for a Greenʼs
function for injection at a fixed location along the shock, at
z = 0, and then integrate over the region along the shock,
from z = 0 to z = L, in which particles are injected. The
constant Q0 in the source term scales the injection of

particles,

Q u f Lp , 30 1 inj inj ( )=

where ò is the injection efficiency, finj is the distribution
function at the injection energy, and L is size-scale of the
shock.
As shown in Figure 2, we track the quantity V· in the

MAS code along a magnetic flux bundle on the flanks of the
expanding CME. We observe that the acceleration region is
most pronounced where the CME expansion and acceleration is
strongest. On the flux bundle shown here, the outward speed of
the CME expansion is 600< km s−1 at 1.5 solar radii. By the

Figure 1. Configuration in the low corona based on MAS simulations (Schwadron et al. 2014) showing a strong compression driven by the expansion of a CME. The
strong compressions on the flank of the CME create the conditions that lead to rapid particle acceleration. The configuration of the erupting magnetic flux rope (panel
(a)) is shown with associated photospheric field strength Br in grayscale on the solar surface. The CME accelerates rapidly to plasma speeds (panel (b)) of thousands of
km s−1 low in the corona. As a result of the CME’s rapid acceleration, strong compressions and shocks are formed showing a large negative velocity divergence,

u· (panel (c)) expressed in code units corresponding to 7 10 4´ - s−1. The box in panel (c) is blown out (panel (d)) to indicate the plane of the shock or
compression and a magnetic flux bundle piercing the shock. In panel (d), note the magnetic field normal angles 1q and 2q upstream and downstream from the shock or
compression. The expansion velocity driving these compressions is also shown.
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Figure 2. We show the development of a compression region on a bundle of field lines. The curves on the right show V and V· along the field line bundle as the
CME expansion acts in the low corona at four different instances within the simulation. The configuration on the left shows the open magnetic field bundle (depicted
as a tube) that is deformed by the expansion of the CME. The color-coding on this field line bundle indicates V· . Times are in hh:mm:ss, where time zero
corresponds to t 182 At= (see Appendix A). Note that the simulation shows the formation of a coronal compression region low in the corona, causing V∣ · ∣ to
increase. After the initial expansion, V∣ · ∣ forms a maximum and then falls at later times as the CME pushes the compressed sheath into the inner heliosphere.
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time this expansion reaches 1.8 solar radii, the expansion speed
reaches ∼1500 km s−1. After this point, the acceleration of the
CME slows, and the speed of the CME expansion roughly
levels off at around 1400 km s−1.

In the right panels of Figure 2, we include the divergence of
the plasma velocity. This divergence provides an excellent
indicator for the pronounced effects of the CME expansion and
acceleration. The divergence is largest between 1.5 and 2 solar
radii and then falls off at larger distances.

The fourth term on the left-hand side of the Parker transport
Equation (1) includes the divergence in the plasma velocity. It
is precisely this term that leads to the acceleration of energetic
particles. Because the CME acceleration is prompt and roughly
localized between 1.5 and 2 solar radii, this is also the location
where we expect prompt acceleration of energetic particles.

The localization of the acceleration region motivates a
treatment of the shock acceleration process detailed in
Appendix D.4. One of the important features of the configura-
tion of the acceleration region is that the connection between
the shock or compression and a magnetic field line (or flux
bundle) moves along the structure. This motion of this
connection point occurs as particles are being accelerated.
Therefore, on average, the higher the energy of the particle
distribution, the longer the flux bundle near which these
particles are accelerated has remained in contact with the shock
or compression. Because of the finite size of the shock or
compression, a flux bundle connection point eventually moves
off of the accelerator, which then limits the maximum energy
gain of the particles and, as we will show, leads to the
formation of a broken power-law in the particle distribution.

The diffusive acceleration process starts at a specific energy,
the injection energy, which is quantified in Appendix C and
shown in Figure 3 as a function of k k^  at a fixed obliquity.
The rate of acceleration is strongly influenced by the obliquity
of the shock or compression and the diffusion coefficient. The
parallel diffusion coefficient is given as v 3k l=  , where l is
the parallel mean free path associated with particle scattering.
As detailed in Appendix B, we have taken a scattering mean
free path that scales as R Rg g0 0( )l l= c

  , where R pc qg = is
the particle rigidity and R m v c e A Zg p0 0 0 0( )( )= is a reference
rigidity at mass m A mp0 0= , charge q Z e0 0= , and speed v0.

The simulation analyzed here allows us to investigate the
angle between the shock normal and the magnetic field ( BNq ).
In principle, the rapid expansion of the CME should result in a
quasi-perpendicular shock or compression close to the Sun.
Figure 4 demonstrates the transition of the shock or compres-
sion from a quasi-perpendicular structure close the Sun ( R2 s< )
to a quasi-parallel structure farther out ( R2.5 s> ). The figure
also shows that the shock or compression is quasi-perpendi-
cular where the magnitude of divergence in velocity is largest.
Li et al. (2009) studied the rigidity dependence of wave–

particle interactions at shocks of varying obliquities. Quasi-
perpendicular shocks typically result in weak rigidity
dependence ( 1c < ), whereas quasi-parallel shocks result in
more pronounced rigidity dependence (χ >1). For reference
speed v0, we use a value consistent with a kinetic energy
T 10 = MeV/nuc.

Typical scattering mean free paths at 1 AU and MV rigidities
scale from 0.01 to 1 AU (Dröge 2005). We adopt a 1 AU mean
free path of 0.14 AU and use a B1 scaling into the low corona.
Assuming a typical 1 G field, we find a reference scattering
mean free path of 0.0150l = Rs at T 10 = MeV/nuc.
In this problem, acceleration time is an important factor. The

acceleration rate (see Appendix D) is given by

d
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Here, the component diffusion coefficients are
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2 2 ( )k k q k q= + ^

sin cos , 7xz ( ) ( )k k k q q= - ^

sin cos , 8zz
2 2 ( )k k q k q= + ^

Figure 3. Injection energy (in MeV) for particles with a range of different
levels of perpendicular diffusion (k k^ ) and at a range of different shock
angles (the angle between the shock normal and the magnetic field).

Figure 4. Utilizing the flux bundle tracked in Figure 2, we find the velocity
divergence (top panel), shock or compression radius (middle panel), and BNq
(magnetic field angle with respect to the shock normal). The time axis is
relative to 01:28:57 in the simulation time.
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and θ is the angle between the magnetic field and plasma flow.
The acceleration time to a given momentum p is

x

u

d

d p
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ln
. 9p

p ( )t
d t

»
D

=

Figure 5 shows the acceleration time as a function of the shock-
normal angle with respect to the magnetic field. Small angles
represent quasi-parallel configurations, whereas large angles
represent quasi-perpendicular configurations. We have taken a
compression ratio of 3. Note that for a quasi-perpendicular
configuration ( 70> ) the acceleration time up to 100MeV is on
the order of minutes or less. Therefore, prompt acceleration to
high energies in strong compression regions and shocks
requires a quasi-perpendicular configuration.

As detailed in Appendix D.1, the distance associated with
motion along the shock in the coplanarity plane is

z
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where we have taken the flow normal to the shock, the
diffusion coefficient is sin cosxzi i i( )k k k q q= - ^ , and the
subscript i refers to upstream (i = 1) or downstream conditions
(i = 2). We take a given shock length L as the region over
which acceleration can occur. Utilizing Equation (10), we then
derive the characteristic energy (per nucleon A) to which
particles may be accelerated,
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energy makes use of the acceleration time, pt ,
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Figure 6 shows these energy limits as a function of the shock
angle. We refer to the limits as the break energy since particle
distributions drop rapidly above the limit. We have assumed a
size-scale of L = 1 Rs and an acceleration time of 10pt =
minutes. At large shock angles ( 30> ), the characteristic size
(L) of the accelerator presents the most significant limit on the
energy of particles from the site of acceleration. At small shock
angles ( 30< ), the characteristic time ( pt ) of the acceleration

Figure 5. Acceleration time to the indicated energies as a function of the
shock-normal angle with respect to the magnetic field. Small angles represent
quasi-parallel configurations, whereas large angles represent quasi-perpendi-
cular configurations. We have taken a compression ratio of 3. Prompt
acceleration (on the scale of minutes) to high energies (>30 MeV) requires a
quasi-perpendicular configuration.

Figure 6. Break energy of accelerated particles as a function of the shock angle
(field-flow angle). Size-limited break energies apply for large shock angles
( 30> ), whereas time-limited break energies apply for lower shock angles
( 30< ). Larger shock angles lead to higher break energies.
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presents the most significant limit on the break energy.
Generally, larger shock angles lead to higher break energies.

Appendix D.4 considers injection along a shock of length L
in the plane of the magnetic field (plane of coplanarity). For a
fixed shock angle, we obtain the following solution:
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Based on Kozarev et al. (2013) and Dayeh et al. (2009), we
assume a population for the seed population with differential
flux that scales as
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where T is kinetic energy, T 10 = MeV, 1.96sg = , and
J 70 = protons cm−2 s−1 sr 1- MeV 1- . This injected
spectrum is then converted into a distribution function to
solve for finj.

The solution for the distribution function stated above
ignores the escape of particles from the shock. This is an
important factor that helps to steepen the spectrum above the
break energy. A solution that incorporates escape is developed
in Appendix D.5:
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where F z p,L ( ) is the previous total distribution with no loss
effects, Equation (75), and the factor g ploss ( ) is
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and vinj is the particle injection speed.
Figure 7 shows differential spectra that incorporate escape

(Equation (16)) for several values of χ using a shock obliquity
angle of 70°. Note the existence of both a spectral break and a
roll-over at higher energies. The spectral break drops with
energy for increasing values of χ. For comparison, Figure 8
shows the spectrum in the case in which there is no escape of
particles from the shock accelerator.

The spectral break is associated with injection of particles
along a fixed length L along the shock. Below the break energy,
the spectrum attains a power law close to the result from steady
diffusive acceleration. Above the break energy, the convection
of the flux bundle through the injection region coupled with
diffusion on and across the flux bundle away from the injection
site causes the power law to steepen.

The spectra simulated by the model are fit to the same
spectral form as used by Mewaldt et al. (2012):

J CE E E E E

CE E
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exp , 18

0 1 2 0

1 2 0 2 1
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2 2 1{ }[ ]
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( ) ( ) ( )( )

 g g

g g g g

= - -

= - -

g

g g g-

where we refer to E0 as the break energy, 1g as the lower-energy
power-law exponent, and 2g the higher-energy power-law
exponent. Figure 9 shows the break energy as a function of the
power-law exponent χ in rigidity ( Rgl µ c

 ) for three different
size shocks and with and without escape from the shock. In all
cases, we assume a driver speed of u 15001 ~ km s−1, a
compression ratio at the shock of r 3c = , and 0.001k k =^  . In
addition to the simulations shown in these figures, we have
explored the behavior of the solution for the distribution
function. We observe that the break energy increases with the
size of the shock, the CME driver speed, and with reductions in
the scattering mean free path.

Figure 7. Differential spectra for several cases of χ based on Equation (16).
This spectrum is developed for the case in which escape of particles from the
shock is incorporated. Note the existence of a spectral break and a roll-over at
higher energies. The spectral break drops with energy for increasing values of
χ. These spectra are formed at r 1.5~ Rs.

Figure 8. Differential spectra for several cases of χ based on Equation (75). In
this case, loss of particles from the shock is neglected. Note the spectral break
and the relatively smooth power law at higher energies. The spectral break
drops with energy for increasing values of χ. These spectra are formed at
r 1.5~ Rs.
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3. OBSERVATIONAL IMPLICATIONS OF SIZE-LIMITED
PARTICLE ACCELERATION

In this section, we discuss observational implications of size-
limited acceleration regions from the low corona based on the
strong χ dependence of the break energy. Observationally, the
rigidity dependence of the scattering appears most prominently
in the mass-per-charge dependence of the break energy.
Specifically, the break energy is plotted as a function of Z A,
and a power law is observed (Desai et al. 2015):

T

A

Z

A
, 19break

b

( )⎜ ⎟⎛
⎝

⎞
⎠µ
a

where the quantity ba can be derived observationally. From
Equations (11) and (19), we find that the power law is ba ,
which is directly related to χ:

2 1 . 20b ( ) ( )a c c= +

Note that χ is a positive quantity. From (20), we find that ba
should span the range 0 2b a < .

A second feature demonstrated in Figure 9 is that the break
energy decreases strongly with ba . Increasing Z A results in
larger scattering mean free paths, and therefore less efficient
acceleration.

We calculate the spectral slopes of the differential energy
flux at energies below the break energy (slope 1, 1g ) and at
energies above the break energy (slope 2, 2g ). Results are
shown in Figure 10. The lower-energy spectral slope 1g is
roughly consistent with results of diffusive shock acceleration,

r

r

2

2 1
. 211

c

c( ) ( )g »
+
-

The higher-energy spectral slope 2g is much steeper than 1g ,
and 2g increases with χ and with ba . When escape is included,
the 2g steepens further.

Figure 11 shows observed spectral slopes from 16 ground-
level events studied by Mewaldt et al. (2012). Note that the
typical range of the lower-energy spectral slope is 1 2~ - .
This suggests compression ratios in the range of 2–4 with an
average compression ratio of ∼3.1.

There are essentially no cases of low-energy spectral slopes
that exceed 2.5. This suggests a lower limit for the compression
ratio of r 1.75c = . We may be observing a natural selection
effect where weak shocks fail to produce sizable SEP events,
and are therefore excluded from the data set.
The higher-energy spectral slope has an average 3.22g ~

and a typical range 2.1–4.6. Based on the results in Figure 10,
this range appears to be consistent with values of 0.1 7c ~ -
( 0.2 1.75ba ~ - ) for cases in which escape is neglected and
values of 0.1 1c ~ - ( 0.2 1ba ~ - ) for cases in which
escape is included. The mean value for the spectral slope
( 3.152g ~ ) appears roughly consistent with values of 3c <
and 1.5ba < for cases in which escape is neglected or values
of 0.7c < and 0.6ba < when a relatively weak shock (r 2c = )
is considered. The fact that slope 2 steepens sharply for 1c >
and 1ba > when escape is included suggests that large quasi-
perpendicular shocks ( 1c < ) have much harder spectra above
the break energy as compared to quasi-parallel shocks ( 1c > ).
Figure 12 shows the break energy as a function of the

difference between spectral slopes. Generally, for the range of
injection regions considered and the conditions with and
without escape, the predictions appear to roughly span the
range of observations. To account for large break energies
accompanied by large spectral slope differences, we must

Figure 9. Break energy as a function of χ for three different size injection
regions with and without escape of particles from the shock incorporated. The
break energy increases with the size of the injection region. The break energy is
also larger when loss from the shock is neglected. All curves all apply for

0.0150l = Rs. While the lower x-axis shows the break energy as a function of
rigidity-dependent power-law exponent χ, the upper x-axis shows the
corresponding charge-per-mass power-law exponent, ba .

Figure 10. Slopes of the differential energy flux below (slope 1) and above
(slope 2) the energy break for two different values of the compression ratio and
situations where we include and neglect escape. Note that slope 1 is consistent
with the results of diffusive shock acceleration theory, while slope 2 is steeper.
Slope 2 increases sharply with χ and with ba .

Figure 11. Observed spectral slopes associated with ground-level events from
Mewaldt et al. (2012). The upper x-axis shows the compression ratio associated
with shocks that produce a given value of the lower-energy spectral slope.
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include escape. Escape likely becomes important for larger
injection regions associated with amply sized shocks ( 1> Rs).
Conversely, smaller injection regions ( 1< Rs) may be asso-
ciated with more localized CMEs. Escape from such structures
may be difficult due to the rapid expansion of the acceleration
region.

Recently, Desai et al. (2015) fitted the ∼0.03–500MeV nuc−1

energy spectra with the double power-law Band function and
obtained values for the low-energy and high-energy spectral
indices and break energies for 11 species (H–Fe) in 46 large
gradual SEP events. The vast majority of these 46 events were
observed when the S/C were magnetically well connected to the
Sun, and therefore presumably to the solar source regions, and
none were accompanied by energetic storm particles (ESPs) or
the local interplanetary-shock-associated components. These
events were specifically selected to study properties of SEP
events for which the acceleration processes occur remotely at
CME shocks in the solar corona and the inner heliosphere. Seven
of the 46 SEP events surveyed by Desai et al. (2015) were
associated with GLEs and are among the 16 GLEs studied by
Mewaldt et al. (2012). As in the case of the GLEs, the events
studied by Desai et al. (2015) show a distribution of spectral
indices consistent with our analysis. In particular, the higher-
energy spectral slope has an average 3.32g » and a typical
range of 2–5. Moreover, the analysis here suggests that the
observed range of ba should be between 0 and 2 (see
Equation (20)), which is also consistent with the distribution of

ba obtained from power-law fits to the break energy versus the
Q/M ratio of 11 species in each of the 46 SEP events by Desai
et al. (2015).

4. DISCUSSION AND CONCLUSIONS

Recent MHD simulations of CME expansion show the
formation of strong compression regions and shocks at low
coronal heights, 2< R. These compressions and shocks form
due to the rapid expansion and acceleration of the CME and
then subside higher in the corona where the CME acceleration
slows.

We developed a model of particle acceleration at a low
coronal shock or compression with a finite size (length L) and a
fixed field-flow angle. Results of the model show the
pronounced effects of particle diffusion and particle escape,
leading to double power-law distributions. The slope of the

power law below the spectral break is roughly consistent with
steady diffusive shock acceleration. However, above the
spectral break, the spectral slope is strongly controlled by the
rigidity dependence in the diffusion coefficients.
We performed an initial examination of these results in the

context of observations of SEP events. The observations appear
roughly consistent with the model. The approach taken here
provides a potentially straightforward interpretation of broken
power-law distributions from large SEP events and a number of
important testable properties. The latter should help to spur on
future studies comparing observations, theories, and models of
energetic particle acceleration and propagation.
The break energy and the higher-energy power law are both

strong functions of the rigidity dependence of the scattering
mean free path, which can be determined by the charge-to-mass
dependence of the break energy. For example, strong rigidity
dependence in the scattering mean free path reduces the break
energy and softens the spectrum above the break energy. The
spectral index above the break energy is controlled by diffusion
away from the injection region and escape, which participates
in steepening the spectral slope above the break energy.
Application of the concepts developed here to SEP

observations suggest a number of tentative conclusions. First,
examination of the spectral slopes below the break energy
suggests compression ratios at shocks in the range of
r 2 4c = - . Second, analysis of the charge-to-mass depen-
dence in spectral slopes suggests rigidity dependence in the
scattering mean free path, where Rgl µ c

 and the typical range
of 0.5 7c = - . For 1c < , diffusion is weakly rigidity
dependent, consistent with quasi-perpendicular shocks (Li
et al. 2009). In the opposite limit of 1c > , diffusion is
strongly rigidity dependent, consistent with quasi-parallel
shocks (Li et al. 2009; Battarbee et al. 2011, 2013; Vainio
et al. 2014). The wide range of characteristics suggests
competing mechanisms at work in SEP acceleration.
An important feature of the structures that accelerate

particles from the low corona is the buildup of the quasi-
perpendicular field compression at the front of the CME
expansion. The fact that this sheath is draped by magnetic fields
containing the plasma that is swept up by the CME suggests
that this region should be effective at storing particle
populations released prior to the CME injection. Therefore,
these sheaths may naturally build up He3 and heavy ions (e.g.,
Fe) released by flares. Subsequent acceleration near the shock
or compression would thereby enhance such populations that
build up within the sheath.
Thus, we find that strong compressions and shocks in the

low corona may naturally create broken power-law distribu-
tions that arise in large SEP events. Cases in which shocks are
very strong naturally yield more efficient particle acceleration
and weak rigidity dependence in particle diffusion coefficients.

We thank all those who made C-SWEPA (NASA grant
NNX13AI75G), EMMREM (grant NNX07AC14G), Sun-
2-Ice (NSF grant AGS1135432), DREAM (NASA
grant NNX10AB17A), and DREAM2 (NASA grant
NNX14AG13A) projects possible. Data for all figures can be
obtained by contacting the lead author, N. Schwadron. The
contributions of T.T., C.D., R.L., J.A.L., Z.M., and P.R. were
supported by the NSF Frontiers in Earth System Dynamics
program and the Center for Integrated Space Weather
Modeling, and by NASAʼs SBIR, HTP, LWS, and SR&T

Figure 12. Observed and predicted values of the break energy as a function of
the difference of spectral slopes, 2 1∣ ∣g g- . Events with higher break energies
should have harder spectra and weaker rigidity dependence.
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programs. Computational resources were provided by the NSF
supported Texas Advanced Computing Center (TACC) in
Austin and the NASA Advanced Supercomputing Division
(NAS) at Ames Research Center.

APPENDIX A
MHD SIMULATION OF A FAST CME

The CME simulation employed for our analysis, also used in
Lionello et al. (2013), will be described in detail in a
forthcoming publication (T. Török et al. 2015, in preparation).
Here we restrict ourselves to a brief summary of its main
properties.

The simulation is performed using the Magnetohydrody-
namic Algorithm outside a Sphere (MAS) code (e.g., Mikić &
Linker 1994; Linker et al. 1999; Lionello et al. 1999; Mikić
et al. 1999). The code uses spherical coordinates and advances
the standard viscous and resistive MHD equations. It
incorporates radiative losses, thermal conduction parallel to
the magnetic field, and an empirical coronal heating function.
The latter properties are essential for realistic modeling of the
plasma densities and temperatures in the corona and provide
the possibility of producing synthetic EUV and soft X-ray
images that can directly be compared to the observations (see
Lionello et al. 2009).

The simulation domain covers the solar corona between 1
and 20 Rs, where Rs is the solar radius. The grid is
nonuniform in r q f´ ´ , resolved by 251 301 261´ ´
points, with r 0.3» Mm at the lower radial boundary and
r ≈ 153 Mm at 20 Rs. The latitudinal (longitudinal) mesh
varies between 1.4q f» » Mm in the active region (AR)
center and 46q » Mm ( 42f » Mm) far from the AR. The
boundary conditions are discussed by Linker & Mikić (1997)
and Linker et al. (1999).

The Alfvén travel time at the base of the corona
( R VA s At = ) for B∣ ∣ = 2.207 G and n 10 cm0

8 3= - , which
are typical reference values, is 24 minutes (Alfvén speed
V 481A = km s−1). A uniform resistivity is chosen such that the
Lundquist number R At t is 1.0 107´ , where Rt is the resistive
diffusion time. A uniform viscosity ν is used, corresponding to
a viscous diffusion time tn such that 500At t =n . This value is
chosen to dissipate unresolved scales without substantially
affecting the global solution. During our model eruption, when
strong reconnection occurs below the erupting CME, we
locally increase the resistivity and viscosity to values required
to keep the calculation numerically stable.

We consider an idealized coronal magnetic configuration,
consisting of a global dipole with a field strength of 2 G at the
poles and a quadrupolar active region (AR) located at 25» 
north of the equator. We choose a quadrupolar AR since CMEs
from such regions tend to produce faster CMEs than bipolar
source regions (e.g., Török & Kliem 2007; Wang &
Zhang 2008). After an MHD solution including a solar wind
is obtained by relaxing the system for 150 At to a steady state
(see Lionello et al. 2009), we insert a modified version of the
flux rope model by Titov & Démoulin (1999, hereafter TDM)
above the central polarity inversion line (PIL) of the AR.
Including the flux rope, the model AR has a total unsigned flux
of 7.5 1022» ´ Mx and a maximum radial-field strength of

1070» G at the photospheric level.
In contrast to previous CME simulations that employed the

Titov–Démoulin model (e.g., Manchester et al. 2008; Lugaz
et al. 2011), we do not use an unstable flux rope to trigger the

CME. Rather, we choose the parameters of the inserted TDM
rope such that it is stabilized by the ARʼs ambient magnetic
field. After the insertion, we relax the system for another 32 At ,
which allows the wave-like perturbation caused by the insertion
to travel out of the numerical domain. After a fast and strongly
dynamic initial adjustment to the surrounding magnetic field,
the flux rope evolves toward a numerical equilibrium. This
novel technique of flux rope insertion is detailed by Titov et al.
(2014). After the relaxation, the free magnetic energy of the AR
is about 1.0 1033´ erg, which is sufficient to power a strong
eruption.
The CME is initiated by triggering the eruption of the TDM

flux rope. This is done by imposing slow, localized photo-
spheric converging flows toward the main PIL (e.g., Bisi
et al. 2010) for about 45 minutes [t 182 183.8 A( ) t= - ].
These motions cancel flux at the PIL and quasi-statically
expand the magnetic field overlying the flux rope. As a
consequence of the progressively reduced magnetic tension, the
rope rises slowly, until it reaches a critical height at which it
becomes unstable and erupts (e.g., Kliem & Török 2006;
Aulanier et al. 2010; Török et al. 2011). Aided by the strong
(flare) reconnection jets that occur below the erupting rope, the
resulting CME rapidly accelerates to a velocity of
≈3000 km s−1 low in the corona (r R2 s ), after which it
slows down and finally travels with an almost constant speed of

1000» km s−1 at heights r R3 s . We coupled this simulation
to the heliospheric version of MAS and propagated the eruption
up to 1 AU (Lionello et al. 2013). We found that the CME
arrives at 1 AU with a speed of 600» km s−1, still moving
significantly faster than the surrounding slow solar wind.
The eruption feature most relevant for our investigation is

the large-scale compression region that forms in front of the
CME and at its flanks. Figure 1 shows a snapshot of the
erupting flux rope together with the local plasma velocity and

v· (which shows regions with the strongest compression).
While not pertinent to the present investigation, the figure also
reveals the strong compression associated with the flare
reconnection jets in the wake of the CME.

APPENDIX B
EFFECTIVE PARALLEL AND PERPENDICULAR

SCATTERING MEAN FREE PATHS

The diffusion tensor is given by

e e e e , 22b b b b( )ˆ ˆ ˆ ˆ ( )K Ik k= + -^

where k and k̂ are the diffusion coefficients parallel and
perpendicular to the magnetic field, respectively.
In this study, we consider a range of different ratios of

perpendicular to parallel diffusion of s,k k^ , where
v 3s,k l=  is the parallel diffusion coefficient associated

with scattering through wave–particle interaction. The recom-
mended range of some previous studies is (0.01–0.05) (e.g.,
Giacalone & Jokipii 1999). However, there is considerable
uncertainty about the value or range of the k k^  and its
dependence on particle energy. For example, in one recent
study, Zank et al. (2006) finds a value as small as

0.001k k ~^  .
Supergranulation reconfiguration timescales are typically

1rt ~ day. This implies a random walk diffusion coefficient
associated with reconfiguration of the magnetic field given by

D R l u , 23r rs
2( ) ( ) ( )t=
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where l ~ 20,000 km is the size-scale of a supergranule and
u 400~ km s−1 is the solar wind speed. Jokipii & Parker
(1969) argued that the random walk of field lines above the
photosphere should yield a diffusion coefficient that scales with
the square of the radius, D r D R r Rr r s s

2( ) ( )( )= . The perpen-
dicular scattering mean free path is then D r3 r ( )l ~^ , and the
associated perpendicular diffusion coefficient is v 3k l~^ ^ .
At an energy of 1MeV, this would yield a ratio of

2.5 10 5k k ~ ´^
-

 , many orders of magnitude smaller than
the values cited above (0.001–0.05). As a result, we consider a
range of different levels for k k^  ranging from 10 5- to 0.01.

APPENDIX C
PARTICLE INJECTION

In this and the following appendices, we consider the
presence and effects of a shock on the acceleration of solar
energetic particles. For the purposes of these calculations, there
is no stringent requirement that the structure actually be a
shock. A sharp compression would also lead to the strong
gradients needed for rapid particle acceleration.

We consider a magnetic field line (or flux bundle) that makes
an angle 1q to the shock normal upstream and an angle 2q
downstream of the shock. We take u1 to be the plasma velocity
component normal to the shock. The connection between the
shock and the magnetic flux bundle moves at a speed u tan1 1( )q
along the shock and at a speed u cos1 1( )q along the magnetic
flux bundle. Hence, the parallel injection speed is the minimum
speed for particles needed to keep up with the shock connection
along the magnetic flux bundle,

v
u

cos
. 24inj

1

1( ) ( )∣∣
q

=

Because the shock may have values of 1q close to 90°, we
must also take into account the motion of particles across
magnetic field lines. This significantly reduces the injection
speed because particles may take a more direct path across
magnetic field lines to cross the shock. To work out the
injection speed in this case, including the effects of
perpendicular diffusion, it is necessary to develop an expres-
sion for the diffusive anisotropy, which characterizes the
particle distributionʼs departure from isotropy. The anisotropy
is expressed as S vf3 0( )d = , where the particle streaming is S,
the isotropic part of the distribution is f0, and the particle speed
is v. An expression for the anisotropy can be solved for as an
analytical solution to the Parker transport equation. Here, we
express the magnitude of the anisotropy (Giacalone 2001):
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where k and k̂ are the diffusion coefficients parallel and
perpendicular to the mean magnetic field, respectively. The
antisymmetric component of the diffusion tensor is vr 3gAk =
and contains the effect of drifts. A general condition on the
validity of the theory of diffusive shock acceleration is that the
magnitude of the anisotropy must be small. If this condition
breaks down, particles do not rapidly scatter across the shock,

and the shock acceleration process slows. The injection speed
can be solved for by requiring that the anisotropy magnitude is
less than a quantity of order unity. Here, we express this
condition as 3d < , where the factor of 3 is chosen so that the
resulting injection speed,

v u

1
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,
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yields the parallel injection speed (24) in the limit that 0k ^
and 0Ak  .

APPENDIX D
DIFFUSIVE ACCELERATION ANALYTICAL SOLUTION

Our approach to understanding the influence of shock
structure on the evolution of distribution functions at the shock
follows closely from the solution applied by Schwadron et al.
(2008) for the termination shock.
Here, we first use Fourier analysis to solve for the

distribution function at the shock given injection at a single
point along the shock and a finite angle (θ) between the shock
normal and the magnetic field. We find that this solution
contains many of the essential properties needed to understand
the combined effects of particle motion, diffusion, and
acceleration along the shock. The main difference between
this approach and that used by Schwadron et al. (2008) is the
form of the mean free path, which we now take to depend on
particle rigidity. The previous treatment by Schwadron et al.
(2008) assumed a constant scattering mean free path.
In the following, we use expressions for the diffusion

coefficients along x and z where

cos sin , 27xx
2 2 ( )k k q k q= + ^

sin cos , 28xz ( ) ( )k k k q q= - ^

sin cos . 29zz
2 2 ( )k k q k q= + ^

As mentioned previously, we have not included an off-
diagonal term, Ak , due to drift that is sometimes included in the
diffusion tensor. Instead of including the drift term in the
diffusion tensor, an explicit drift term, Bcvp qB f3 2· [ ( ) ] ´ 
, may be included on the left-hand side of the Parker equation.
Such a treatment is considered in Appendix D.2. Generally, drift
leads to motion out of the coplanarity plane. However, the effect
tends to be small, except for shocks or compressions with
obiquity angles very close to 90◦.

D.1. Solution in the Coplanarity Plane

Consider the steady state injection of particles at a shock at
position z = 0 and x = 0 with momentum pinj. The differential
equation in this case is as follows:

u
u

f f p
f

p
Q x z p p

3
, 300 inj

· · ( · )
·

( ) ( ) ( ) ( )

K

d d d

 -   -
 ¶

¶
= -

where

e e e e . 31b b b b( )ˆ ˆ ˆ ˆ ( )K Ik k= + -^
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As shown in Figure 13, we take x z,( ) as the coplanarity plane
and no dependence on y, so that cross-field drifts do not appear.

The source term is a slight modification of the standard
treatment for diffusive shock acceleration theory. The shock or
compression is within a plane (y z- ) centered at x = 0.
Magnetic field lines lie within the x z- plane (coplanarity).
The constant Q0 scales the injection of particles,

Q u f Lp , 320 1 inj inj ( )=

where ò is the injection efficiency, finj is the distribution function
at the injection energy, and L is size-scale of the shock.

We expand the differential equation as follows:
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We then Fourier transform the differential equation, with the
following convention for the Fourier integral:

f z x p dk ikz f k x p, ,
1

2
exp , , . 34( ) ( ) ˜ ( ) ( )òp

=
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The Fourier-transformed differential equation then becomes
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For x 0¹ , we take f xexp˜ ( )aµ , which leads to the
following quadratic equation that is solved upstream and
downstream

u ik iku k2 0. 36xx x xz z zz
2 2( ) ( )a k a k k- + - + + =

The upstream (j = 1) and downstream (j = 2) solutions are as
follows:
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The signs, 1 j 1( )- + , are chosen for convergence: for k = 0, they
must give the result for a stationary shock.
Given the solution for ja , we now integrate (35) from the

upstream to the downstream side of the shock. This integral
extends over a narrow region centered on the shock jump, and
therefore pulls out only quantities that change almost
discontinuously across the shock. As a result, we recover the
following equation:
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With the solutions upstream and downstream from the shock,
we can now express the solution for f k p,˜ ( ), and, in turn, the
distribution function at the shock
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where u u ux x1 2D = - . Up to this point in the derivation, the
steps are identical as those performed in (Schwadron
et al. 2008, Appendix B).
The departure in the derivation comes when treating the

diffusion mean free paths, which are proportional to a power-
law in speed vl µ c. Noting that the square root in (40) equals
u 2xj as k 0 , we add and subtract u 2xj from the square root;

Figure 13. Schematic diagram of magnetic flux bundle piercing a shock or
compression region at two times. The black flux bundle is shown at an initial
time (t = 0), and the blue line represents the flux bundle at some small time
(t td= ) later.
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the pln -integral of u 2xj is trivial, and we obtain
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where r r3 1c c( )g = - is the standard power-law index of
diffusive shock acceleration. Assuming that the protons are
non-relativistic so that p mv» , and noting that the square root
is a function of k v 1( )¢ c+ , we rewrite (41) as
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where k v 1( )x = ¢ c+ , kv 1h = c+ , v 31k t= c+
  , k =^

v 31t c
^

+ , and the lower limit of the ξ-integration has been
replaced by minus infinity since the integrand is convergent as
kv 0inj

1 c+ .
The η-integral is only a function of z v 1c+ . If v z1

0h>c+ ,
where 0h is the scale for the decay of the integrand of the η-
integration, then the factor i z vexp 11[ ( )]h »c+ and (42) yield
the high-energy power-law spectrum f vs

1µ g c- - - . For small
and intermediate values of v z1c+ (v z1
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v z1
0h~c+ ), we may expand the integrand of the ξ-

integration in powers of ξ and retain terms up to order 2x .
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The remaining integration in (43) can be evaluated by
“completing the square” in the argument of the exponential

function. We then obtain the following:
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The only difference between (46), evaluated for small z v 1c+ ,
and (42) with z v 01( ) =c+ , which yields the correct
asymptotic energy spectrum, is the expansion of the square
root in powers of ξ up to order 2x .
Equation (46) demonstrates the physical nature of diffusive

acceleration on flux bundles with a moving point of shock
intersection. Since it takes time for ions to be accelerated to
progressively higher energies, the peak of the distribution of
ions must move from the point of injection to progressively
more distant regions on the flank of the shock. Therefore,
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The solution for fs is written in the form of a diffusive
solution,
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The average diffusion rate along the shock is
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D.2. Solution out of the Coplanarity Plane

The differential equation for particle transport and accelera-
tion out of the coplanarity plane includes the curvature and
gradient drifts from the magnetic field:
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We then Fourier transform the differential equation, with the
Fourier transform defined as
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For x 0¹ , we take f xexp˜ ( )aµ , which leads to the
following quadratic equation that is solved upstream and
downstream:
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The signs, 1 j 1( )- + , are chosen for convergence: for k = 0, they
must give the result for a stationary shock.

With the solutions upstream and downstream from the
shock, we integrate from the upstream to downstream side of
the shock, drawing out the terms that are almost discontinuous.
As in the previous subsection, we then solve a first-order

differential equation in terms of the momentum to derive the
solution for the distribution function at the shock
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where u u ux x1 2D = - . As before, we introduce variables
kv 1h = c+ , k v 1( )x = ¢ c+ , assume non-relativistic energies

(p mv= ), and rewrite the integral as follows:
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The η-integral is only a function of y v 1c+ . If y v 1
0h>c+ ,

where 0h is the scale for the decay of the integrand of the η-
integration, then the factor i y vexp 11[ ( )]h »c+ and (42) yield
the high-energy power-law spectrum f vs

1µ g c- - - . For small
and intermediate values of y v 1c+ (y v 1
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c+  and

y v 1
0h~c+ ), we expand the integrand of the ξ-integration in

powers of ξ and retain terms up to order 2x . The ξ-integral may
then be evaluated to yield
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The remaining integration in (63) can be evaluated by
completing the square in the argument of the exponential
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function. We then obtain the following:
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In this case, the peak of the distribution of ions moves from
the point of injection to progressively more distant regions out
of the coplanarity plane where injection occurs. Therefore, the
average distance moved in the y-direction along the shock for
acceleration to a given energy is
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The average ion speed in the y-direction is
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Jokipii (1982) obtained this result without perpendicular
diffusion or transverse plasma velocity. The Jokipii (1982)
solution is a delta function in the y-coordinate, shifted by the
distance a particle drifts along the shock face.

The solution for fs is written in the form of a diffusive
solution,
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The average diffusion rate along the shock in the y-direction,
Ksyy, is the characteristic width of the Gaussian distribution in
(69),
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The diffusion rate along the shock in the y-direction is then
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We note that the results here for Vsy and Ksyy are in
agreement with expressions for the velocities along Schwadron
et al. (2008), with the only difference being the dependence on
higher powers of v due to the modified form of the diffusion
coefficient.

D.3. Generalized 3D Motion and Diffusion Along the Shock

The expressions for the velocities along the shock, (51) and
(68), yield the components of the velocity along the shock in
the z- and y-directions, respectively. We combine these
expressions into a generalized 3D expression for the average
motion along the shock:
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where ui xxi xil k= . An identical expression was derived by
Schwadron et al. (2008). The fact that these expressions are
identical despite the differences in the forms of the diffusion
coefficient reveals the broader generality of the expression.
Similarly, the expressions for the diffusion coefficients (54) and
(71) are combined for a generalized expression for the diffusion
along the shock:
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where u x1 1 1l k¢ =  and u x2 2 2l k¢ =  .

D.4. Analytical Solution for Fixed Shock Angle

The previous analytical solution (69) is used as a Greenʼs
function to solve for the continuous injection of particles at all
locations along a shock with a constant shock-normal angle.
We integrate for injection from z 0¢ = to L. The distribution
function from the ions injected at the point zinj has the
following form:
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We obtain our solution for the total distribution, F z p,s ( ), by
integrating over the locus of injection points distributed from
z L0inj =  :
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Based on the geometry, we take

Q u f Lp , 760 1 inj inj ( )=
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where ò is the injection efficiency and finj is the distribution
function at the injection energy.

D.5. Inclusion of Loss Processes in the Coplanarity Plane

In this section, we treat particle acceleration at low coronal
shocks and include the loss of energetic particles to the
acceleration region. In this case, the transport equation we
solve is written as follows:
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This loss term accounts for the fact that particles are convected
across and out of the acceleration region (of length L) on the
timescale 1 t . Note in this case that we have considered Vsz

(Equation (51)) as the convection speed in the coplanarity
plane. A similar derivation can be applied out of the coplanarity
plane.

The steps for solution are quite similar to those described in
Section D.1. In Equation (35) for the Fourier-transformed
distribution function, we must also include the loss term, f̃ t .
As before, for x 0¹ , we take f xexp˜ ( )aµ , which leads to a
quadratic equation that is solved upstream and downstream:

u ik iku k2 1 0. 79xx x xz z zz
2 2( ) ( )a k a k k t- + - + + + =

Note the additional term 1 t that appears on the left-hand side.
The solution for ja is given by (where upstream applies for
j = 1 and downstream for j = 2)
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The solution for f k p,˜ ( ), and, in turn, the distribution function
at the shock is
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Utilizing the previous expansions, we obtain the following
separable solution:

f z p f z p g p, , , 82s
loss

s
loss( ) ( ) ( ) ( )=

where f z p,s ( ) is the solution previously obtained and g ploss ( )
is a term characterizing the effects of loss:
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where vinj is the particle injection speed.
Because the solution f z p,s

loss ( ) is separable, the term
g ploss ( ) is also carried through the total distribution function,
F z p,s

loss ( ), integrated over the locus of injection points:

F z p F z p g p, , , 85s
loss

s
loss( ) ( ) ( ) ( )=

where F z p,s ( ) is the previous total distribution with no loss
effects (Equation (75)).
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