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N%A Open Data Explore Witl

< Back o the Blog _

What is NASA doing with Big Data
today?

October 04, 2012 by Nick Skytland

In the time it took you to read this sentence, NASA gathered approximately 1.73 gigabytes of data from our nearly 100

currently active missions! We do this every hour, every day, every year — and the collection rate 1s growing exponentially.
Handling, storing, and managing this data 1s a massive challenge. Our data i1s one of our most valuable assets, and its
strategic importance in our research and science 1s huge. We are committed to making our data as accessible as possible, both
for the benefit of our work and for the betterment of humankind through the innovation and creativity of the over seven

billion other people on this planet who don’t work at NASA.




“Applied artificial intelligence research accelerator that
combines the capabilities of NASA, academia, and
private sector companies to tackle challenges not only
Important to NASA, but also to humanity’s future.”
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SETI enables
the public / private = ?,E,TI
partnership




FDL private sector
partners provide
GPU compute, storage
and expertise
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BUT FIRST SOME CONTEXT...

NASA /BIG DATA/AI

WHAT ARE THE OPPORTUNITIES?
HOW CAN FDL HELP NASA MOVE FORWARD?



Artificial Intelligence : A Few Definitions

Artificial Intelligence (Al)

A computer which mimics cognitive functions typically associate with human intelligence.
Examples : goal seeking strateqy formulation, complex image recognition, "learning”, inference, and creative problem solving.

: - g L : . { : UNSUPERVISED
Machines Learning (ML): A branch of artificial intelligence in which a computer LEARNING CLUSTERING
progressively improves its performance on a specific task by “learning” from data, Group end inferpre

without being explicitly programmed. on input dafo

- Closely related to computational statistics, which focuses on prediction and MACHINE LEARNING M

P - SUPERVISED
optimization. LEARNING

Develop predictive

model based on both
input and output data
REGRESSION

Data Mining: Discovering patterns in large data sets using techniques at the
iIntersection of machine learning, statistics, and data management.

: ] y : IMAGENET Annual Competition to accurately classify over
Deep Learning (DL): An extension of Machine Learning that uses the 10 million hand-annotated images

mathematical concept of a neural network (NN) to loosely simulate information
processing and adaptation patterns seen in biological nervous systems. 7
g

 Many problems which have been traditionally tackled with pensive coding
have been overwhelmingly superseded by neural nets that outperform the
humans that trained them.

* Exponential investment (patents, publications, funding) has fueled rapid
advances in DL capabilities to make predictions, to identify anomalies, and x Statict
A £ 2 atistical ML and hand-coded
even create new content that mimics what it has previously seen. o' computer vision solutions

2011 2012

Super-human accuracy

Accuracy
o0 o0 ® O O

Deep Learning takes over




Statistical Machine Learning vs. Deep Learning

Interpretation: Machine Learning systems provide “visibility” into their statistical
Deep learning foundations, allowing their results to be interpreted and explained. Deep
Learning systems are more of a “black box”, although this is improving... and in

Data Scale: When properly some cases this is not an impediment (e.g. Al-enhanced science discovery)

architected, the efficacy of
DL systems continue to
improve with more data,
long after statistical models
have plateaued.

Performance

Whole System: Machine Learning typically requires that complex systems be
“chunked” into trainable components that are then manually recombined.
Deep Learning can often “short circuit” that process and successfully model
complex systems from end-to-end

Amount of data

Feature Discovery: Machine Learning often requires a human expert to - p— oo . T
create “feature extractors” that enable the statistical models to - [’ Solar Corona = . .
learn effectively, but Deep Learning finds these high-level features O T o . /IB L .
for itself (often with surprisingly creative results) S " emit Electromagnétic Radiation j
, : e T ‘ . VlSlble < ‘
. | N ; Eartriqﬁgsoheri
B 4 J ' 3 - ’ P e ,. o EUV | .anet Earth Atmosphere

Raw data Low-level features Mid-level features High -level features - | e N\ D e . . ‘ .)

ACthlty ' . . .
ASN N7 BRSNS | Phenomena | . - 3—
J ‘ ! 2D ‘ '— - ———
N7 B < PELSmCE Y . ;
SIS NESATREH S . . e T . =
' . k‘ .‘..’m"' : e Magnetized Plasma Clouds T ‘_ : .
=SS veealzd DSS AR - N -
\ Energenc Particles - . B

Deep Learning will discover these feature abstractions for itself. . ‘- .

fEarth Magnetosphere -

Deep Learning can often discover features to learn from the entire system




Examples of Deep Learning in Space Science

Discovery of Dipoles using Neural Networks

degraded GAN recovered

Deep Learning Enhanced Astrophysical Images

. .

Credit: V. Kumar

PSF=2.5", 100 * Detection of Global Dipole Structures
* Most known dipoles discovered
Kevin Schawinski et al, Generative Adversarial Networks recover features in astrophysical « Some “new’ dipoles: Previously unknown phenomenon?

images of galaxies beyond the deconvolution limit, Royal Astronomical Society, 2017

* A new dipole near Australia [Liess et al., J Clim’14]

Input Layer Output Layer

SL2S J020833-071414 SL2S J021737-051329

Neural Network
discovery and
analysis of
gravitational lenses

Neural Net Analysis of
Mars HIRISE
Images

| .. SL2S J140156+554446 B SL2S J141137+585119 ‘ SL2S J142059+583007

Cre'dit: Leon Palafox,
University of Arizona 500 m

SL2S J021902-082934 SL2S J084909-041226 SL2S J135847+545913

Identif.ication. of Martian ovolcanic.;.roojtless cones within Yashar D. Hezaveh et al. “Fast automated analysis of strong gravitational lenses with
HIRISE images (96% classification accuracy) convolutional neural networks”, Nature, Aug 2017



Examples of Deep Learning in Space Science

Deep Learning Discovery of Hypervelocity Stars

Applying Deep Learning Al techniques to
the Orbit Propagation Problem

@esa Present

Inputs: 1720(1 rev.), Training data: 4 satellite revolutions, Hidden layers: 1.

@ Hidden neurons: 74.
@ Total number of weights & bias: 127354.
@ Activation function: Maxout.
m °

@ Training
B Forecast

Elena Rossi, et al. Discovery of hypervelocity stars using an artificial neural network with ESA Gaia
data, European week of Astronomy and Space Science, 2017

4

Number of revolutions

Juan Félix San-Juan Applying Al techniques to the orbit propagation problem

Juan Felix San-Juan, International Round Table on Intelligent Control for Space Missions
November 24, 2017



Al & Deep Learning at NASA

« Some Deep Learning exploratory projects are underway at NASA. Examples...

 NASA DeepSAT: A Deep Learning Approach to Tree-Cover Delineation in 1-m NAIP Imagery. (S. Ganguly, AGU 2016)
* Anomaly detection in aviation data using extreme learning machines. (V. Manikandan, et al. International Joint

Conference on Neural Networks, 2016)

« Multi-Objective Reinforcement Learning-Based Deep Neural Networks for Cognitive Space Communications. (P.

Ferreria, et al. NASA/TM-2017)

... but more experience is needed in order to establish an overarching strategy.

* FDL provides a low-risk / low-cost mechanism for NASA to move
forward:

* Program is managed by the SETI Institute, but with NASA
guidance on the problem definitions

* Private sector partnerships provide infrastructure, resources
and much of the funding

 NASA experts participate, learn, and observe best practice:
allows NASA's strategy for Al to move forward in a more
informed manner

“Frontier Development Lab is proving its value at training early
career professionals/students to apply modern data science
techniques to sticky analysis problems confronting NASA science
and exploration programs. [...] The BDTF finds that this type of
program aligns with its recommendations to NASA that there
needs to be more formal, long term education as well as more
short-form workshops dedicated to introducing modern data
science methodologies as approaches for improving the
discoveries in its vast science data archives.”

Source: Final Report of the Big Data Task Force, NASA Advisory

Council Science Committee, 2017.
https://science.nasa.gov/science-committee/subcommittees/big-data-task-force
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 PROGRAM STRUCTURE
* RESULTS & PROGRESS
 FUTURE PLANS



NASA

FRONTIER

DEVELOPMENT LAB
Success driving Growth

3 projects in 2016 5 projects in 2017 12 projects in 7 areas being
assessed for 2018
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FDL FlareNet Neural Net model learned
to treat patterns of active regions as key
predictors of solar flares

Deep Learning for crater detection as a
step towards lunar resource planning —
error rates down to 2%!

2013 2014

Pattern Pattern
recognition recognition

NASA

FRONTIER

DEVELOPMENT LAB

Snapshot Summary
of 2017 Results

Automatic meteor shower detection to help find
long-period comets... neural net model achieved
88.6% precision in identifying meteors

Meteors

Non Meteors

5
]
v
|
B % I I

Clouds Planes Birds Small Bright

Correlating solar wind to geomagnetic
Kp Index — the machine learning model
discovered the importance of ring
currents with no a priori knowledge

Self-discovered Kp Index predictors:
Solar wind magnetic field strength and Bz,

- Solar wind speed and proton density,

- Unexpected Result: N-S component of the
geomagnetic field at low latitude stations (Guam,
Hawaii, Puerto Rico). This points to the importance
of the magnetospheric ring current.

@ Machine learning extracted important physical
~  parameters without a priori knowledge of the system.

Neural Net application to create asteroid
3D shape model from radar data —
reduced time from weeks to hours

Generative model Condition on
delay-Doppler images




* Intensive 8-week research program |
On-site teams for optimal collaboration |
Cloud-based computing provisione by private sector |
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IBM’s Executive Project Manager
briefs the FDL team on the compute resource
available for each team.
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Google’s Francois Chollet - inventor of the
Keras.io framework briefs the FDL team.
(Python for machine learning.)
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SPACE WEATHER
MISSION 02

 Current operational flare forecasting relies on
human morphological analysis of active
regions and the persistence of solar flare
activity.

*The FDL team performed analyses of solar
magnetic complexity and deployed
convolutional neural networks to connect
solar UV images taken by SDO/AIA into
forecasts of maximum x-ray emissions.

* The technique has the potential to improve
both the reliability and accuracy of solar flare
predictions.




SPACE WEATHER: SOLAR STORM PREDICTION \

Interdisciplinary Collaborabi’gh‘l
- p N

THIS 1S YOUR MACHINE LEARNING SYSTEM?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSWERS ON THE OTHER SIDE.

WHAT IF THE ANSLERS ARE LJRONG? )

JUST STIR THE PILE DNTIL
THEY START (OOKING RIGHT.

THE SUN'S ATMOSPHERE 1S A
SUPERHOT PLASMA GOVERNED BY
MAGNETOHYDRODYNAMIC FORCES...

AH, YES,
OF CDURSE.

WHENEVER T HEAR THE WORD

"MAGNETOHYDRODYNAMIC™ MY BRAIN
JUST REPLACES IT WITH "MAGIC.

Heliophysicist’s view of ML Data scientist's view of HP
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Communications Damage Disruption
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SPACE WEATHER: SOLAR STORM PREDICTION

HOW‘ i]lar def

GOES 24hr Max. X-ray Flux Data

Solar Flares
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May — June 2014

Using X-ray flux as measured by the GOES satellite



SPACE WEATHER: SOLAR STORM PREDICTION

How does I*)AA '

Based on a set of guidelines and human expertise:
Sunspot morphology and Persistence (assume the Sun does not change)

THE CLASSIFICATION OF SUNSPOT GROUPS

PATRICK S. McINTOSH
NOAA Space Environment Lab, Boulder, CO 80303-3328, U.S A.

(Received in revised form 21 August, 1989)

Abstract. The 3-component Mclntosh classification of sunspots was introduced in 1966, adopted for
interchange and publication of data in 1969, and has been used increasingly in recent years. The Mclntosh
classification uses a modified Zurich evolutionary sequence as its first component, class, where two of the
Zurich classes are omitted and more quantitative definitions are used. It then adds descriptions of the largest
spot (second component) and the degree of spottedness in the group intertor (third component) to define
60 distinct types of sunspot groups. Definitions of the Mclntosh classification system and their rationale
are presented herein. Correlations with solar flares excel those with the earlier Zurich classification,
prompting the use of the McIntosh classification in an expert system (Theo) for predicting X-ray solar flares.
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SPACE WEATHER: SOLAR STORM PREDICTION

Deep Learni -

— W

What the computer sees

;,-
’
4
®
\

82% cat
15% dog

image classification 2% hat

1% mug

cs231n.github.io/classification



SPACE WEATHER: SOLAR STORM PREDICTION

Deep Lear

/’\

What the computer sees

SDO/AIA 171 2012—11—=13" 16:30:12%80s

82% cat
15% dog

image classification 2% hat

1% mug

cs231n.github.io/classification
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SPACE WEATHER: SOLAR STORM PREDICTION

Deep Lear o\

What the computer sees

SDO/AIA 171 2012—11—=13" 16:30:12%80s
- .

¥ f 3.2x10>W m-2
é ; AR X-Ray Flux
F/. “ﬁ /: !%: 4 r"'k y ’é.“

cs231n.github.io/classification



Use deep Ilearning to enhance our
physical understanding of solar flares
and develop a new generation of flare
forecasting tools.




SPACE WEATHER: SOLAR STORM PREDICTION

Deep Lear N

IMAGENET

Accuracy Rate

® Traditional CV Deep Learning

2010 2011 2012 2013 2014 2015

NVIDIA. Deep learning has revolutionized the way we do image classification.




Dataset Preparation: Take advantage of big data
Software: Build scientific process

Prediction: Enable Flare Forecasting

Science: Visualize Results

* Discover Flare Precursors
*  Providing new physical insight
- New Physics?
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Can we use deep learning
to connect AlIA images with
flare strength?
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Neural networks with layers
made of tunable convolution
filters

SDO/AIA 171

2012—11=13"16:50:FZ8%%



SPACE WEATHER: SOLAR S;I'ORM PREDICTION
Deep Learning: Convolutional

‘._’\. “5; ar-Acm-aa-g
\)'. = -Bl W.C’y ‘

reareecB1IEEA 1

=l aACEET =N
N omrol

Several convolutional layers allow the neural network to recognize
features of increased complexity



FlareNet

I J
I J
Il
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a
1A

SDO/AIA |
1024x1024x8 |

Block 1 - 24 576 parameters

\\'v
Pooling /
9x8
128x128x16 |
S

= | Logly) | f—> Com2D P> Conv2D
16 8x8 Filters 16 8x8 Filters
1024x1024x23 ,. 1024x1024x16 1024x1024x16
b
4
| Block 2 - 98 304 parameters
I\“--. Max Pooling ..-”'
\ 2y 8 [ Conv2ZD <— ConvZD
\ 32 8x8 Filters 32 8x8 Filters
| 16x16x32 128x128x32 128x128x32
N

Block 3 - 393 216 parameters

Total parameters: 518,667

2560 parameters

v

Dense
1 Neurons
11 parameters

\ Max Poolin
Conv2D —) Conv2D _) 2x8 ’
64 8x8 Filters 16 8x8 Filters \
16x16x64 16x16x64 2x2%64
Dense
10 Neurons
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Training ¢ Validation - = y=X

1 0-3 C-class M-class X-class

Our first goal was to see if the neural network
could connect AIA images with flare X-ray
amplitude.

The concern Is whether the neural network Is
simply memorizing the images.
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Observed X-ray Flux (Watts m‘2)
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* Training

-3 C-class

M-class

¢ \/alidation

- - y=x

X-class

Observed X-ray Flux (Watts m'2)

- - {0
e .

Only flares observed
prior to 2015
used for training

Our current neural network seems to be able
to generalize for weak flares (C-class), but not
vet for stronger flares .



b

Flare Amplitude Distribution - SDO era

| IC-class: 7191 flares
| IM-class: 635 flares
| |X-class: 44 flares

Our current biggest challenge is class
imbalance!

X-Ray Flux



What does a convolutional neural
network pay attention to?

Simonyan, K., Vedaldi, A., & Zisserman, A. (2013). Deep Inside Convolutional
Networks: Visualising Image Classification Models and Saliency Maps.



Simonyan, K., Vedaldi, A., & Zisserman, A. (2013). Deep Inside Convolutional
Networks: Visualising Image Classification Models and Saliency Maps.
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FlareNet is FlareNet is paying attention to the relative location of structures in
different channels




SPACE WEATHER: SOLAR STORI\/I PREDICTION -.

F Iare‘let S Whvatlons

Several convolutional layers allow the neural network to
recognize features of increased complexity



Block 1

Filter 7 Color

Block 2

Filter 81 fexture

Block
Filter 7




Block 1
Filter 7

Block 2

Filter 8 Texture

FlareNet learned the Block 3
importance of active regions Filter /

Structure




=  Developed a framework to apply CNNs to heliophysics
problems.

=  Developed a CNN visualization framework to mine
trained networks for physical insight.

= Demonstrated the capability of CNNs to identify
structures of flaring relevance.



Expand our data enhancement capabillities.

Explore the possibility of adding other instruments to
increase our flare pool (Stereo, SOHO, GOES.)

Try alternative problem definitions besides regression
(distribution, classification.).
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INTERA TIONS

* The vast amounts of data collected by satellites and

observatories operated by government agencies such as
NASA, NOAA and the US Geological Survey remains a
largely untapped resource for discovering how the Sun
interacts with Earth.

* The FDL team built a knowledge discovery module named

STING (Solar Terrestrial Interactions Neural Network

Generator) on top of industry-standard, open source

machine learning frameworks to allow researchers to
further explore these complex datasets.

- STING showed the ability to accurately predict the

variability of Earth’s geomagnetic fields in response to solar
driving - specifically the KP index.

* In the process the tool discovered the imprint of the

magnetospheric ring current in precursors of geomagnetic
storms - an example of an Al derived discovery.



SPACE WEATHER: SOLAR TERRESTRIAL INTERACTIONS

DATA SOURCES

___DSCOVR Solar wind

Speed (km sec)

(=3}

-
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H
o
un

TTTT TTTTTIT T T

Temp (eK)

19017—05-06 00:00 2017-05-07 00:00 2017-05-08 00:00

Solar wind data from swpc.noaa.gov. Plot by "9 RESE' LLC" for spaceweathernews.com




SPACE WEATHER: SOLAR TERRESTRIAL INTERACTIONS

Kp INDEX

K index | nT dift

Use this table on the
1 ght. to convert the
difference in the
maximum and
mirmum

x-values for today to
a K index. The
larger the K index,
the stormier 1t 15 1n
Earth’s magnetic
field.

120-200

Petersburg, AK magnetometer
data with a 75 nT change in the
X-cdirection (Magnetic North)

'—I l-. l-. l-' l—' l-i
LI - 4 51)
U= 551

450-500




SPACE WEATHER: SOLAR TERRESTRIAL INTERACTIONS

GRADIENT BOOSTING RESULTS

DummyRegressorMean
DummyRegressorMedian
- GradientBoostingRegressorl00
—— Ground Truth K p

by |

- 5 -

215 .y

34000 36000 38000 40000

2016-10-10T05:09:00.000000Z




SPACE WEATHER: SOLAR TERRESTRIAL INTERACTIONS

FEATURE DISCOVERY

This plot shows the relative importance of the physical parameters for Kp prediction.

K p
VX, km/s, GSE

Field mag avg, nT

© si6.x

Proton density, n/cc

Self-discovered Kp Index predictors:
- Solar wind magnetic field strength and Bz,
- Solar wind speed and proton density,

SHU Z - Unexpected Result: N-S component of the

HON_X geomagnetic field at low latitude stations (Guam,

HON_Y Hawaii, Puerto Rico). This points to the importance

Bz, nT (GSM) of the magnetospheric ring current.

GUA_Y

FRD_Y Q Machine learning extracted important physical

FRN_Z parameters without a priori knowledge of the system.
Flow speed, km/s

S|G_Z

NEW Z

QHII Y



PLANETARY DEFENSE

MISSION 02
RA DA R TS * The FDL team tackled the task of automating
3 D S H A P E task of creating 3D shape models of NEOs

MODELING

* The process currently takes up to four
weeks of manual interventions by experts
using established software.

* The team demonstrated a pipeline for
automation that allows NEOs to be modelled
In several hours.

* This result will hopefully support
researchers render 3D models of the current
backlog of radar imaged asteroids.

COMPUTE BY : = ==




AL ° <
PLANETARY DEFENSE _ .
MISSION 01+ ADAR 3D SHAPE MODELI

| 3 . I o * Meteor shower
. . . 2 i
Co M E I S , _ of long period comets can guide deep searches,
. ’ -

and improve warning time, for potentially hazardous
long period comets that passed near Earth’s orbit in
the past ten millennia.

A A 5 * The FDL team showed how the data reduction of
i 2 the ‘CAMS’ meteor shower survey program could be
: e i successfully automated by using deep learning
% approaches.
9
— ., - By using dimensionality reduction (t-SNEs) the team
0?5 Co b were able to identify yet uncatalogued meteor shower
N X '
A - W | clusters - a promising direction for further
, ‘? , . o | investigation.
,2)0 (é,\\ )
% N



SPACE RESOURCES (intel)’ S{g';ggﬁms.w

LUNAR WATER
’ - A | %

L

- Maps that detail the regions of interest in the dark
polar regions are plagued by artefacts and shadow
variability that severely hamper the planning of future
prospecting missions.

* A large dataset was compiled for the south polar
region and high-level feature extraction was
performed. Results showed an impressive speed-up of
100x compared to human experts, with more than
98.4% agreement when approaching a crater labelling.

* This work represents a potential keystone to facilitate
accessing water on the Lunar surface and future
traverse planning.

COMPUTE BY (intel’)



Closing Thoughts

Focus on applied Al solutions using mainstream deep learning
tools, thereby complementing and informing the research into
novel Al technology being undertaken by other NASA teams.

Strong incentive for the private sector to participate due to
commercial opportunities that are implicit in the outcome;

Clear risk/cost reduction benefit to manned activities beyond
LEQO, and for cis-lunar operations in particular;

Problem definitions for which relevant data has already been
collected and is available for use under an open license.



By way of example, consider the application of Al to Space Weather

» Solar flares and associated proton storms pose a significant risk to astronauts
beyond LEO, and offer little or no warning. The Apollo “near miss” of the August 1972 solar flare
provides a dramatic example of this concern.

* Multiple industry sectors have a vested commercial interest in seeing
improvements to solar flare predictions and better heliophysics modeling in
general. Examples include the power utilities, insurance companies,
communications and satellite operators, and the military.

* There are hundreds terabytes of well structured heliophysics data highly suited to deep learning
applications, including the archives from SDO/AIA, ACE, and SOHO.

* The image-centric nature of solar data (e.g. SDO — HMI and AlA) makes it easy to leverage the
rapid advances in image analysis that the Al community has contributed into open source.

* There are tantalizing indications that machine learning techniques can offer better predicative
capabilities for the system science of space weather and the use of neural net deep learning will
prove to be quite effective.



